course Phy 201 ?W?E?xk???K???assignment #016
......!!!!!!!!...................................
12:39:09 Class notes #15 When a projectile rolls off a ramp with its velocity in the horizontal direction, why do we expect that its horizontal range `dx will be proportional to the square root of its vertical displacement `dy rolling down the ramp?
......!!!!!!!!...................................
RESPONSE --> The KE gained on the ramp is proportional to `dy and to v^2, so v attained on the ramp is proportional to the square root of y.Since the horizontal velocity of the projectile is constant, the horizontal distance `dx it travels is proportional to v and hence to `sqrt(y). Since `dx is proportional to `sqrt(y), y is proportional to `dx^2. confidence assessment: 2
.................................................
......!!!!!!!!...................................
12:41:07 ** Since the initial vertical velocity is zero the time of fall for a given setup will always be the same. Therefore the horizontal range is proportional to the horizontal velocity of the projectile. The horizontal velocity is attained as a result of vertical displacement `dy, with gravitational PE being converted to KE. PE loss is proportional to `dy, so the KE of the ball as it leaves the ramp will be proportional to `dy. Since KE = .5 m v^2, v is proportional to sqrt( KE ), therefore to sqrt(y). **
......!!!!!!!!...................................
RESPONSE --> The horizontal velocity is attained from vertical displacement `dy, with grav. PE changed to KE. The PE loss is proportional to `dy, so the KE of the ball will be proportional to `dy. Since KE=.5mv^2, v is proportional to the square root of KE, therefore to sqrt(y). self critique assessment: 2
.................................................
......!!!!!!!!...................................
12:42:49 In the preceding situation why do we expect that the kinetic energy of the ball will be proportional to `dy?
......!!!!!!!!...................................
RESPONSE --> KE=.5mv^2 velocity=`ds/`dt velocity is affected by distance `dy is a measure of distance confidence assessment: 1
.................................................
......!!!!!!!!...................................
12:44:52 ** This question should have specified just the KE in the vertical direction. The kinetic energy of the ball in the vertical direction will be proportional to `dy. The reason: The vertical velocity attained by the ball is vf = `sqrt(v0^2 + 2 a `ds). Since the initial vertical velocity is 0, for distance of fall `dy we have vf = `sqrt( 2 a `dy ), showing that the vertical velocity is proportional to the square root of the distance fallen. Since KE is .5 m v^2, the KE will be proportional to the square of the velocity, hence to the square of the square root of `dy. Thus KE is proportional to `dy. **
......!!!!!!!!...................................
RESPONSE --> vf=`sqrt(v0^2 + 2 a `ds) if initial velocity is 0 vf=`sqrt(2a `dy) KE=.5mv^2 KE is proportional to the square of the velocity, hence to the square of the square root of `dy. KE is proportional ot `dy. self critique assessment: 2
.................................................
......!!!!!!!!...................................
12:45:54 Why do we expect that the KE of the ball will in fact be less than the PE change of the ball?
......!!!!!!!!...................................
RESPONSE --> Some of the potential energy will be lost as friction and some will go for rotational kinetic energy of the ball. confidence assessment: 2
.................................................
......!!!!!!!!...................................
12:46:30 ** STUDENT RESPONSE: Because actually some of the energy will be dissapated in the rotation of the ball as it drops? INSTRUCTOR COMMENT: Good, but note that rotation doesn't dissipate KE, it merely accounts for some of the KE. Rotational KE is recoverable--for example if you place a spinning ball on an incline the spin can carry the ball a ways up the incline, doing work in the process. The PE loss is converted to KE, some into rotational KE which doesn't contribute to the range of the ball and some of which simply makes the ball spin. ANOTHER STUDENT RESPONSE: And also the loss of energy due to friction and conversion to thermal energy. INSTRUCTOR COMMENT: Good. There would be a slight amount of air friction and this would dissipate energy as you describe here, as would friction with the ramp (which would indeed result in dissipation in the form of thermal energy). **
......!!!!!!!!...................................
RESPONSE --> ok self critique assessment: 3
.................................................
......!!!!!!!!...................................
12:54:11 prin phy and gen phy 6.18 work to stop 1250 kg auto from 105 km/hr
......!!!!!!!!...................................
RESPONSE --> 105km/hr= 1hr=60min 1min=60s 1km=1000m 105km/hr=29.17m/s Ke=.5mv^2 KE=.5*1250kg (29.17m/s)^2=531805kgm^2/s^2=531805J confidence assessment: 2
.................................................
......!!!!!!!!...................................
12:55:38 The work required to stop the automobile, by the work-energy theorem, is equal and opposite to its change in kinetic energy: `dW = - `dKE. The initial KE of the automobile is .5 m v^2, and before calculating this we convert 105 km/hr to m/s: 105 km/hr = 105 km / hr * 1000 m / km * 1 hr / 3600 s = 29.1 m/s. Our initial KE is therefore KE = .5 m v^2 = .5 * 1250 kg * (29.1 m/s)^2 = 530,000 kg m^2 / s^2 = 530,000 J. The car comes to rest so its final KE is 0. The change in KE is therefore -530,000 J. It follows that the work required to stop the car is `dW = - `dKE = - (-530,000 J) = 530,000 J.
......!!!!!!!!...................................
RESPONSE --> `dW=-`dKE KE=.5mv^2=530000J Final KE=0 Change is -530000J Work =530000J `dW=-`dKE self critique assessment: 2
.................................................
wQ??x????????assignment #016 016. `query 16 Physics I 11-08-2007
......!!!!!!!!...................................
13:10:03 Class notes #15 When a projectile rolls off a ramp with its velocity in the horizontal direction, why do we expect that its horizontal range `dx will be proportional to the square root of its vertical displacement `dy rolling down the ramp?
......!!!!!!!!...................................
RESPONSE --> confidence assessment: 3
.................................................
......!!!!!!!!...................................
13:10:09 ** Since the initial vertical velocity is zero the time of fall for a given setup will always be the same. Therefore the horizontal range is proportional to the horizontal velocity of the projectile. The horizontal velocity is attained as a result of vertical displacement `dy, with gravitational PE being converted to KE. PE loss is proportional to `dy, so the KE of the ball as it leaves the ramp will be proportional to `dy. Since KE = .5 m v^2, v is proportional to sqrt( KE ), therefore to sqrt(y). **
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:10:13 In the preceding situation why do we expect that the kinetic energy of the ball will be proportional to `dy?
......!!!!!!!!...................................
RESPONSE --> confidence assessment:
.................................................
......!!!!!!!!...................................
13:10:15 ** This question should have specified just the KE in the vertical direction. The kinetic energy of the ball in the vertical direction will be proportional to `dy. The reason: The vertical velocity attained by the ball is vf = `sqrt(v0^2 + 2 a `ds). Since the initial vertical velocity is 0, for distance of fall `dy we have vf = `sqrt( 2 a `dy ), showing that the vertical velocity is proportional to the square root of the distance fallen. Since KE is .5 m v^2, the KE will be proportional to the square of the velocity, hence to the square of the square root of `dy. Thus KE is proportional to `dy. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment:
.................................................
......!!!!!!!!...................................
13:10:18 Why do we expect that the KE of the ball will in fact be less than the PE change of the ball?
......!!!!!!!!...................................
RESPONSE --> confidence assessment:
.................................................
......!!!!!!!!...................................
13:10:22 ** STUDENT RESPONSE: Because actually some of the energy will be dissapated in the rotation of the ball as it drops? INSTRUCTOR COMMENT: Good, but note that rotation doesn't dissipate KE, it merely accounts for some of the KE. Rotational KE is recoverable--for example if you place a spinning ball on an incline the spin can carry the ball a ways up the incline, doing work in the process. The PE loss is converted to KE, some into rotational KE which doesn't contribute to the range of the ball and some of which simply makes the ball spin. ANOTHER STUDENT RESPONSE: And also the loss of energy due to friction and conversion to thermal energy. INSTRUCTOR COMMENT: Good. There would be a slight amount of air friction and this would dissipate energy as you describe here, as would friction with the ramp (which would indeed result in dissipation in the form of thermal energy). **
......!!!!!!!!...................................
RESPONSE --> self critique assessment:
.................................................
......!!!!!!!!...................................
13:10:25 prin phy and gen phy 6.18 work to stop 1250 kg auto from 105 km/hr
......!!!!!!!!...................................
RESPONSE --> confidence assessment:
.................................................
......!!!!!!!!...................................
13:10:28 The work required to stop the automobile, by the work-energy theorem, is equal and opposite to its change in kinetic energy: `dW = - `dKE. The initial KE of the automobile is .5 m v^2, and before calculating this we convert 105 km/hr to m/s: 105 km/hr = 105 km / hr * 1000 m / km * 1 hr / 3600 s = 29.1 m/s. Our initial KE is therefore KE = .5 m v^2 = .5 * 1250 kg * (29.1 m/s)^2 = 530,000 kg m^2 / s^2 = 530,000 J. The car comes to rest so its final KE is 0. The change in KE is therefore -530,000 J. It follows that the work required to stop the car is `dW = - `dKE = - (-530,000 J) = 530,000 J.
......!!!!!!!!...................................
RESPONSE --> self critique assessment:
.................................................
......!!!!!!!!...................................
13:12:29 prin and gen phy 6.26. spring const 440 N/m; stretch required to store 25 J of PE.
......!!!!!!!!...................................
RESPONSE --> elastic PE=.5kx^2 25kgm^2/s^2=.5(440kgm/s^2/m)*x^2 25kgm^2/s^2=220kgm/s^2/m(x2) Divide by 220 .114m^2=x .34meters=x confidence assessment: 2
.................................................
......!!!!!!!!...................................
13:13:25 The force exerted by a spring at equilibrium is 0, and the force at position x is - k x, so the average force exerted between equilibrium and position x is (0 + (-kx) ) / 2 = -1/2 k x. The work done by the spring as it is stretched from equilibrium to position x, a displacment of x, is therefore `dW = F * `ds = -1/2 k x * x = -1/2 k x^2. The only force exerted by the spring is the conservative elastic force, so the PE change of the spring is therefore `dPE = -`dW = - (-1/2 kx^2) = 1/2 k x^2. That is, the spring stores PE = 1/2 k x^2. In this situation k = 440 N / m and the desired PE is 25 J. Solving PE = 1/2 k x^2 for x (multiply both sides by 2 and divide both sides by k, then take the square root of both sides) we obtain x = +-sqrt(2 PE / k) = +-sqrt( 2 * 25 J / (440 N/m) ) = +- sqrt( 50 kg m^2 / s^2 / ( (440 kg m/s^2) / m) )= +- sqrt(50 / 440) sqrt(kg m^2 / s^2 * (s^2 / kg) ) = +- .34 sqrt(m^2) = +-.34 m. The spring will store 25 J of energy at either the +.34 m or the -.34 m position.
......!!!!!!!!...................................
RESPONSE --> The spring will store 25J of energy at either the .34m or -.34m position. self critique assessment: 2
.................................................
......!!!!!!!!...................................
13:21:23 gen phy text problem 6.19 88 g arrow 78 cm ave force 110 N, speed? What did you get for the speed of the arrow?
......!!!!!!!!...................................
RESPONSE --> 88g=.088kg 78cm=.78m aveforce=110N F=ma 110N=.088kg*a a=1250m/s^2 vf^2=v0^2+2a(`ds) vf^2=0 +2(1250m/s^2)(.78m) vf^2=1950m^2/s^2 vf=44.16m/s confidence assessment: 2
.................................................
......!!!!!!!!...................................
13:23:27 ** 110 N acting through 78 cm = .78 m does work `dW = 110 N * .78 m = 86 Joules appxo.. If all this energy goes into the KE of the arrow then we have a mass of .088 kg with 86 Joules of KE. We can solve .5 m v^2 = KE for v, obtaining | v | = sqrt( 2 * KE / m) = sqrt(2 * 86 Joules / (.088 kg) ) = sqrt( 2000 kg m^2 / s^2 * 1 / kg) = sqrt(2000 m^2 / s^2) = 44 m/s, approx.. **
......!!!!!!!!...................................
RESPONSE --> `dW=110N*.78m=86J .5mv^2=KE solve for v absolute value of v=sqrt(2*KE/m)=sqrt(2*86J/.088kg)=sqrt(2000kgm^2/s^2 *1/kg)=sqrt(2000m^2/s^2=44m/s self critique assessment: 2
.................................................
......!!!!!!!!...................................
13:23:37 query univ phy 6.84 (6.74 10th edition) bow full draw .75 m, force from 0 to 200 N to 70 N approx., mostly concave down. What will be the speed of the .0250 kg arrow as it leaves the bow?
......!!!!!!!!...................................
RESPONSE --> confidence assessment:
.................................................
......!!!!!!!!...................................
13:23:41 ** The work done to pull the bow back is represented by the area beneath the force vs. displacement curve. The curve could be approximated by a piecewise straight line from about 0 to 200 N then back to 70 N. The area beneath this graph would be about 90 N m or 90 Joules. The curve itself probably encloses a bit more area than the straight line, so let's estimate 100 Joules (that's probably a little high, but it's a nice round number). If all the energy put into the pullback goes into the arrow then we have a .0250 kg mass with kinetic energy 100 Joules. Solving KE = .5 m v^2 for v we get v = sqrt(2 KE / m) = sqrt( 2 * 100 Joules / ( .025 kg) ) = sqrt(8000 m^2 / s^2) = 280 m/s, approx. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment:
.................................................
"