#$&* course Mth 279 6/16 11 Section 2.2*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 2. t^2 y ' - 9 y = 0, y(1) = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y' -9y/t^2 = 0 p(t) = -9/t^2 -P(t) = -9/t y = c1*e^(-9/t) sub in initial condition 2 = c1*e^(-9/(1)) 2 = c1/e^(-9) c1 = 2*e^9 solution y(t) = 2*e^(-9/t + 9) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3. (t^2 + t) y' + (2t + 1) y = 0, y(0) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y' + ( (2t + 1) / (t^2 + t) ) y = 0 p(t) = ( (2t + 1) / (t^2 + t) ) -P(t) = -ln( |t(t+1)| ) y = c1*e^-ln( |t(t+1)| ) 1 = c1*e^-ln( |0| ) ln(0) is undefined. Unsure how to proceed.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 4. y ' + sin(3 t) y = 0, y(0) = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: general solution = c1*e^-P(t) p(t) = sin(3t) -P(t) = cos(3t)/3 y = c1*e^(cos(3t)/3) initial condition 2 = c1*e^(cos(0)/3) 2 = c1*e^(1/3) c1 = 2*e^(-1/3) solution y(t) = 2*e^((cos(3t) -1) /3) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 5. Match each equation with one of the direction fields shown below, and explain why you chose as you did. y ' - t^2 y = 0 **** E y = c1*e^(-t^3/3) graph E depicts a cubic function and the solution contains t^3 #$&* y ' - y = 0 **** A y = c*e^t solution is standard exponential graph #$&* y' - y / t = 0 **** C y = c*t solution is linear and graph C has only linear solutions #$&* y ' - t y = 0 **** B y = c*e^(t^2/2) graphs B & D are opposite because their solutions are opposite #$&* y ' + t y = 0 **** F y = c*e^(-t^2/2) #$&* A B C D E F 6. The graph of y ' + b y = 0 passes through the points (1, 2) and (3, 8). What is the value of b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = c1*e^(-b*t) 2 = c1*e^(-b*1) c1 = 2/e^(-b) = 2*e^b sub into second equation 8 = c1*e^(-b*3) 8 = (2*e^b)*e^(-3b) b = -ln(2)/2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 7. The equation y ' - y = 2 is first-order linear, but is not homogeneous. If we let w(t) = y(t) + 2, then: What is w ' ? **** y'(t) #$&* What is y(t) in terms of w(t)? **** y(t) = w(t) - 2 #$&* What therefore is the equation y ' - y = 2, written in terms of the function w and its derivative w ' ? **** w' -(w - 2) = 2 w' - w = 0 #$&* Now solve the equation and check your solution: Solve this new equation in terms of w. **** w = c1*e^t #$&* Substitute y + 2 for w and get the solution in terms of y. **** y = c1*e^t - 2 #$&* Check to be sure this function is indeed a solution to the equation. **** y' = c1*e^t c1*e^t - (c1*e^t - 2) = 2 2 = 2 true #$&* YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 8. The graph below is a solution of the equation y ' - b y = 0 with initial condition y(0) = y_0. What are the values of y_0 and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y(0) = y_0 y(0) = 1 y_0 = 1 y = c1*e^(b*t) 1 = c1*e^(b*(0)) 1 = c1*e^0 c1 = 1 y = e^(b*t) point (-1, 0.5) 0.5 = e^(b*(-1)) b = ln(2) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!