#$&* course Mth 279 6/16 12 Solve each equation:*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 2. y ' + t y = 3 t YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = e^-P(t) * int[ e^P(t) * g(t) ]dt + C*e^-P(t) g(t) = 3t p(t) = t P(t) = t^2/2 y = e^(-t^2/2) * int(e^(t^2/2) * 3t)dt + C*e^(-t^2/2) y = e^(-t^2/2) * int(3te^(t^2/2))dt + C*e^(-t^2/2) y = e^(-t^2/2) * 3*e^(-t^2/2) + C*e^(-t^2/2) y = 3 + C*e^(-t^2/2)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3. y ' - 4 y = sin(2 t) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = e^-P(t) * int[ e^P(t) * g(t) ]dt + C*e^-P(t) g(t) = sin(2t) p(t) = -4 P(t) = -4t y = e^-(-4t) * int(e^(-4t) * sin(2t))dt + C*e^-(-4t) y = e^4t * int(e^(-4t) * sin(2t))dt + C*e^4t y = e^4t * (-e^-4t*cos(2t))/10 - (e^-4t*sin(2t))/5 + C*e^4t y = -cos(2t)/10 - sin(2t)/5 + C*e^4t y = C*e^4t - cos(2t)/10 - sin(2t)/5 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 4. y ' + y = e^t, y (0) = 2 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = e^-P(t) * int[ e^P(t) * g(t) ]dt + C*e^-P(t) g(t) = e^t p(t) = 1 P(t) = t y = e^-t * int(e^(t) * e^t)dt + C*e^-t y = e^-t *(e^2t)/2 + C*e^-t y = C*e^-t + e^t/2 inital condition 2 = C*e^0 + e^0/2 2 = C +1/2 C = 3/2 y = (3*e^-t)/2 + e^t/2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 5. y ' + 3 y = 3 + 2 t + e^t, y(1) = e^2 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = e^-P(t) * int[ e^P(t) * g(t) ]dt + C*e^-P(t) g(t) = e^t + 2t + 3 p(t) = 3 P(t) = 3t y = e^-3t * int(e^3t * (e^t + 2t + 3))dt + C*e^-3t y = e^-3t * int( (e^t)^4 + 2t(e^t)^3 + 3(e^t)^3 )dt + C*e^-3t y = e^-3t * [((e^t)^4)/4 + (2t(e^t)^3)/3 + (7(e^t)^3)/9 ] + C*e^-3t y = e^t/4 +2t/3 + 7/9 + C*e^-3t y = C*e^-3t + 2t/3 + e^t/4 + 7/9 initial condition e^2 = C*e^(-3(1)) + (2(1))/3 + e^1/4 + 7/9 e^2 = C*e^-3 + 2/3 + 1/4 +7/9 C = e^5 - (61e^3)/36 y = (e^5 - (61e^3)/36)*e^-3t + 2t/3 + e^t/4 + 7/9 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 6. The general solution to the equation y ' + p(t) y = g(t) is y = C e^(-t^2) + 1, t > 0. What are the functions p (t) and g(t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Looking at the solution and comparing to the standard format of C*e^-P(t) P(t) = t^2 p(t) = 2t In order to have a the constant 1 in the solution the e^-P(t) term must be multiplied by the integral of e^P(t)*g(t) and equal one. We know e^-P(t) = e^-t^2 and e^P(t) = e^t^2 Therefore 1 = e^-t^2 * int (e^t^2 * g(t)) int(e^t^2 *g(t))dt = e^t^2 e^t^2 * g(t) = d/dt(e^t^2) e^t^2 * g(t) = 2t*e^t^2 g(t) = 2t confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:"