#$&* course Mth 279 6/20 12 Section 2.4.*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 2. What annual rate of return is required if an investment of $1000 is to reach $3000 in 15 years? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A=P(1+r/n)^(nt) 3000 = 1000(1 + r)^15 3 = (1 + r)^15 r = .0759 = approx 7.6% confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3. A bacteria colony has a constant growth rate. The population grows from 40 000 to 100 000 in 72 hours. How much longer will it take the population to grow to 200 000? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: P(0) = 40,000 P(72)= 100,000 P(t) = Ae^(k*t) Ae^0 = A = 40,000 Ae^(72*k) = 100,000 divide second equation by the first (Ae^(72*k))/A = 100,000/40,000 e^(72*k) = 2.5 ln(e^(72*k) = ln(2.5) 72*k = ln(2.5) k = ln(2.5)/72 k = 0.012726 A = 40 000 P(t) = Ae^(.012726*t) 200,000 = 40,000*e^(.012726*t) t = 126.5 126.5 - 72 = approx 56.5 more hours confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 4. A population experiences growth rate k and migration rate M, meaning that when the population is P the rate at which new members are added is k P, but the rate at they enter or leave the population is M (positive M implies migration into the population, negative M implies migration out of the population). This results in the differential equation dP/dt = k P + M. Given initial condition P = P_0, solve this equation for the population function P(t). **** P(t) = Ce^(kt) -(M/k) #$&* In terms of k and M, determine the minimum population required to achieve long-term growth. **** e^(kt) must be greater than M/k at t(0), P(0) = C - (M/k) therefore C (minimum population) must be greater than M/k #$&* What migration rate is required to achieve a constant population? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Migration rate must be equal to rate of population increase k*P confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 5. Suppose that the migration in the preceding occurs all at once, annually, in such a way that at the end of the year, the population returns to the same level as that of the previous year. How many individuals migrate away each year? **** The migration count must equal the population growth for the year #$&* How does this compare to the migration rate required to achieve a steady population, as determined in the preceding question? **** The migration rate must equal the population increase kP. The rate of increase must equal the rate of decrease. #$&* YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 6. A radioactive element decays with a half-life of 120 days. Another substance decays with a very long half-life producing the first element at what we can regard as a constant rate. We begin with 3 grams of the element, and wish to increase the amount present to 4 grams over a period of 360 days. At what constant rate must the decay of the second substance add the first? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Q(t + T) = 1/2*Q(t) T = ln(2)/k 120 = ln(2)/k k = 0.00578 This is the rate of decay of the first element. General solution Q'(t) = -Ce^(kt) 3 = Ce^0 C = 3 Q'(t) = 3e^(-.00578*t) + Me^(kt) 4 = 3e^(-.00578*360) + M M = 3.62/360 = k2 = .01
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:"