#$&* course Mth 279 6/23 12 query 042.5.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 2. Solve the preceding question if the tank contains 500 gallons of 5% solution, and the goal is to achieve 1000 gallons of 3.5% solution at the end of 8 hours. Assume that no solution is removed from the tank until it is full, and that once the tank is full, the resulting overflow is well-mixed. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: At the time when the tank is full, it will contain 500 gallons of 5% solution and 500 gallons 3% solution. This is equivalent to a 1000 gal 4% solution. Q'(t) = 0.03*r - Q(t)*r/1000 = r/1000 * (30 - Q(t)) = (-r/1000) * (Q(t) - 30) dQ/(Q(t) - 30) = -r/1000 dt integrate both sides ln(Q(t) - 30) = -r*t/1000 + c Q(t) - 30 = C * e^(-r*t/1000) Q(t) = 30 + Ce^(-r*t/1000) Q(0) = 30 + Ce^0 = 0.04(1000) = 40 30 + C(1) = 40 C = 10 Q(t) = 30 + 10e^(-r * t/1000) Q(480) = 30 + 10e^(-r * 480/1000) = 0.035(1000) = 35 10e^(-r * 480/1000) = 5 e^(-r * 480/1000) = 5/10 e^(-r * 480/1000) = 0.5 ln(0.5) = -r * 480/1000 r = - ln(0.5) / 0.48 r =approx. 1.44 gal/min After solving I realized this equtation does not take into account the time to fill the tank completely. I believe the time would be t=500/r but I am unsure how to implement this.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3. Under the conditions of the preceding question, at what rate must 3% solution be pumped into the tank, and at what rate must the mixed solution be pumped from the tank, in order to achieve 1000 gallons of 3.5% solution at the end of 8 hours, with no overflow? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: r1 and r2 are flow in and out respectively. The amount of water in the tank at any time t is 500*(r1-r2). If r1-r2 is negative the level is dropping and if positive it is filling up. The tank will be filled in 8 hrs or 480 min. 480 = 500*(r1-r2) (r1-r2) = 0.96 r2 = r1 - 0.96 My best guess would be dQ/dt = (r1-(r1-0.96))Q but I don't think that is right
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 4. Under the conditions of the first problem in this section, suppose that the overflow from the first tank flows into a second tank, where it is mixed with 3% saline solution. At what constant rate must the 3% solution flow into that tank to achieve a 4% solution at the end of 8 hours? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: dQ/dt = 0.03r(t) - Q(t)*r/1000 = r(t) (0.03 - Q(t)/1000) = (r(t)/1000) * (30 - Q(t)) = (-r(t)/1000) * (Q(t) - 30) dQ/(Q(t) - 30) = -r/1000 dt integrate both sides ln(Q(t) - 30) = -r*t/1000 + c Q(t) - 30 = C * e^(-r*t/1000) Q(t) = 30 + Ce^(-r*t/1000) Q(0) = 30 + Ce^0 = 0.05(1000) = 50 30 + C(1) = 50 C = 20 Q(t) = 30 + 20e^(-r * t/1000) Q(480) = 30 + 20e^(-r * 480/1000) = 0.035(1000) = 40 20e^(-r * 480/1000) = 10 e^(-r * 480/1000) = 10/20 e^(-r * 480/1000) = 0.5 ln(0.5) = -r * 480/1000 r = - ln(0.5) / 0.48 r = approx. 1.44 gal/min confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 5. In the situation of Problem #1, suppose that solution from the first tank is pumped at a constant rate into the second, with overflow being removed, and that the process continues indefinitely. Will the concentration in the second tank approach a limiting value as time goes on? If so what is the limitng value? Justify your answer. **** The concentration in the second tank would eventually reach the concentration of the first tank, but never drop below it. #$&* Now suppose that the flow from the first tank changes hour by hour, alternately remaining at a set constant rate for one hour, and dropping to half this rate for the next hour before returning to the original rate to begin the two-hour cycle all over again. Will the concentration in the second tank approach a limiting value as time goes on? If so what is the limiting value? Justify your answer. **** If overflow is still removed then it will eventually reach the same concentration and limiting value as the first tank, it will simply take longer. #$&* Answer the same questions, assuming that the rate of flow into (and out of) the tank is 10 gallons / hour * ( 3 - cos(t) ), where t is clock time in hours. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: If the rate into and out of the tank are always equal, and the flow out is well mixed, then the concentration will still drop until it reaches the concentration of the first tank. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 6. When heated to a temperature of 190 Fahrenheit a tub of soup, placed in a room at constant temperature 80 Fahrenheit, is observed to cool at an initial rate of 0.5 Fahrenheit / minute. If at the instant the tub is taken from the oven the room temperature begins to fall at a constant rate of 0.25 Fahrenheit / minute, what temperature function T(t) governs its temperature? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: at T_diff = 110 temp change is -.05 F/min dT/dt = (.05 / 110) * (T - T_room) T_room = 80 - 0.025*t dT/dt = (0.05 / 110) * (T - 80 -.025*t) dT/dt - (0.05 / 110)*T = -(0.05/110*.025)*t - (80*0.05/110) u(t) = e^(-0.05/110*t) multiply through by u(t) and integrate T/e^(.05/110*t) = (0.025*t + 135)/e^(.05/110*t) + C divide by u(t) T(t)= 0.025*t + Ce^(.05/110*t) + 135 initial condition T(0) = 190 190 = 0.025*(0) + Ce^(.05/110*(0)) + 135 190 = 0 + Ce^(0) + 135 C = 55 T(t) = 0.025*t + 55*e^(0.05/110*t) +135 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!