#$&* course Mth 279 6/23 11 Query 05 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.10. Solve 3 y^2 y ' + 2 t = 1 with initial condition y(0) = -1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3 y^2 dy = (1 - 2 t) dt integrating yields y^3 = t - t^2 + c y = (t - t^2 + c) ^ (1/3) substitute initial condition y(0) = -1 -1 = (0 - 0^2 + c)^(1/3) c = -1 y = (t - t^2 - 1)^(1/3) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.18. State a problem whose implicit solution is given by y^3 + t^2 + sin(y) = 4, including a specific initial condition at t = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y^3 + t^2 + sin(y) = 4 y^3 + sin(y) = 4 - t^2 d/dy ( y^3 + sin(y)) = d/dt(4 - t^2) y'(3y^2 + cos(y)) = -2t y' = (-2t)/(3y^2 + cos(y)) Checking the intial condition. y(2) = 0 0 = 4 - t^2 0 = 4 - 2^2 0 = 4 - 4 0 = 0 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.24. Solve the equation y ' = (y^2 + 2 y + 1) sin(t) fand determine the t interval over which he solution exists. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y ' = (y^2 + 2*y + 1) * sin(t) int(dy/(y^2 + 2*y + 1)) = int(sin(t))dt int(y+1)^-2 dy = -cos(t) + c -1/(y+1) = -cos(t) + c -1 = (-cos(t))(y + 1) y + 1 = -1/(-cos(t)) y = 1/(cos(t) + c) - 1 The solution exists everywhere except: cos(t) + c = 0 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.28. Match the graphs of the solution curves with the equations y ' = - y^2, y ' = y^3 an dy ' = y ( 4 - y). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I could locate any graphs in this assignment confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:"