#$&* course Mth 279 7/1 9 Query 06 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: If the equation is exact, solve the equation (6 t + 3 t^3 ) y ' + 6 y + 9/2 t^2 y^2 = -t, with y(2) = 1. * YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (6t + 3t^3 ) y' + 6y + 9/2*t^2*y^2 + t = 0 In the form Mdt + Ndy = 0 M = 6*y + 9/2*t^2*y^2 + t N = (6*t + 3t^3) dM/dy = 9yt^2 + 6 dN/dt = 9t^2 + 6 These are not eqivilant, so the euation is not exact. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.3.6. If the equation is exact, solve the equation y ' = - ( y cos(t y) + 1) / (t cos(t y) + 2 y e^y^2) with y(0) = pi. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y ' = - ( y cos(t y) + 1) / (t cos(t y) + 2 y e^(y^2)) (t cos(t y) + 2 y e^(y^2))y ' = - ( y cos(t y) + 1) (t cos(t y) + 2 y e^(y^2))y ' + ( y cos(t y) + 1) = 0 M = t cos(t y) + 2 y e^(y^2) and N = y cos(t y) + 1 M_t = cos(t y) - y t sin(t y) N_y = cos(t y) - y t sin(t y) These are equivalent so dF = 0 F_y = t cos(t y) + 2y e^(y^2) F_t = y cos(t y) + 1 F_y = t cos(t y) + 2y e^(y^2) F = integral( (y cos(t y) + 1) dt) = -sin(t y) + h(y) h(y) = e^(y^2) g(t) = 0 F = -sin(t y) + e^(y^2) dF = 0 F = c -sin(t y) + e^(y^2) = c initial condition y(0) = pi -sin(0) + e^(pi^2) = c c = e^(pi^2) solution is -sin(t y) + e^(y^2) = e^(pi^2) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.3.10. If N(y, t) * y ' + t^2 + y^2 sin(t) = 0 is exact, what is the most general possible form of N(y, t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: N(t, y) = N(t, y) M(t, y) = t^2 + y^2sin(t) dH/dt = t^2 + y^2 sin(t) H(t, y) = (1/3)t^3 + y^2cos(t) + g(y) dH/dy = 2ycos(t) + dg/dt
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.3.12. If y = -t - sqrt( 4 - t^2 ) is the solution of the differential equation (y + a t) y ' + (a y + b t) = 0 with initial condition y(0) = y_0, what are the values of a, b and y_0? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Working backwards y = -t - sqrt( 4 - t^2 ) (y + a t) y ' + (a y + b t) = 0 Initial condition y(0) = y_0 y(0) = -0 - sqrt( 4 - 0^2 ) = -sqrt(4) = -2 C = -2 d/dt (y + t + sqrt( 4 - t^2 )) d/dt (( 4 - t^2 )^(1/2) + y + t) (1/2)(-2t)(4-t^2)^(-1/2) + 1 (-t)(4-t^2)^(-1/2) + 1 d/dy (y + t + sqrt( 4 - t^2 )) = 1 M = 1 - t(4-t^2)^(-1/2) + g(y) = 1 - t(4-t^2)^(-1/2) - 2 = - t(4-t^2)^(-1/2) -1 N = 1 + h(t) h(t) = - t(4-t^2)^(-1/2) -1 (y + a t) y ' + (a y + b t) = 0 1 = (y + a t) a = (1-y)/t (a y + b t) = - t(4-t^2)^(-1/2) -1 ((1-y)/t)y + bt = - t(4-t^2)^(-1/2) -1 bt = ((y-1)/t)y - t(4-t^2)^(-1/2) -1 b = ((y-1)/t^2)y - (4-t^2)^(-1/2) -1/t confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:"