#$&* course Mth 279 7/1 12 Query 07 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.4.6. Solve the equation y ' - y = t y^(1/3), y(0) = -9 as a Bernoulli equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y' - y = t*y^(1/3) Since the Equation is already in the bernoulli form: p(t) = -1 q(t) = t n = 1/3 Using v = y^m, which means y = v^(1/m), and m = (1 - n) from the Bernoulli equation. The equation becomes: dv/dt + (1-n)p(t)v = (1 - n)q(t) dv/dt + (1-(1/3))(-1)v = (1 - (1/3))(t) dv/dt + (2/3)(-1)v = (2/3)(t) dv/dt + (- 2/3)v = (2/3)(t) This Equation can now be solved using a previous method. u(t) = e^(int(p(t))dt) for the form y' + p(t)y = g(t) For this equation: p(t) = (-2/3) int(p(t)) dt = (-2/3)t = -2t/3 u(t) = e^(-2t/3) v' + (- 2/3)v = (2/3)(t) v' e^(-2t/3) + (- 2/3)ve^(-2t/3) = (2/3)(t)e^(-2t/3) v' e^(-2t/3) - (2/3)ve^(-2t/3) = (2/3)(t)e^(-2t/3) (ve^(-2t/3))' = (2/3)te^(-2t/3) Integration of both sides yields ve^(-2t/3) = Int ((2/3)te^(-2t/3)) dt Integration of the Right hand side required Integration by parts udv = uv - Int(vdu) u = t dv = e^(-2t/3) dt du = dt v = Int(dv) = (-3/2)e^(-2t/3) The Equation becomes: ve^(-2t/3) = (2/3)((-3/2)te^(-2t/3) + (3/2) Int(e^(-2t/3)) dt) ve^(-2t/3) = -te^(-2t/3) + (-3/2)e^(-2t/3) ve^(-2t/3) = -te^(-2t/3) - (3/2)e^(-2t/3) dividing out u(t) = e^(-2t/3) v = -t - (3/2) + c y = v^(1/m) = v^(1/(1 - n)) y = v^(1/(1 - 1/3)) = v^(3/2) y = (-t - (3/2) + c)^(3/2) solve for C with initial condition y(0) = -9 y(0) = (-0 - (3/2) + c)^(3/2) (-(3/2) + c)^(3/2) = -9 (-(3/2) + c)^(3) = 81 (-(3/2) + c) = cuberoot(81) C = cuberoot(81) + (3/2) = 5.83 approx. Equation becomes: y = (-t - (3/2) + cuberoot(81) + (3/2))^(3/2) y = (-t + cuberoot(81))^(3/2) y = (cuberoot(81) - t)^(3/2) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.4.8. Solve the equation y ' = - (y + 1) + t ( y + 1)^(-2) as a Bernoulli equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y ' = -(y + 1) + t( y + 1)^(-2)y' + y + 1 = t( y + 1)^(-2) y’ + y = t( y + 1)^(-2) - 1 substitute u = y + 1 so that u' = y' u ' = -u + t u^2 u ' + u = t*u^2. This is now a bernoulli equation n = 2. v = u^m = u^(1 - n) = u^(-1). The equation becomes v ' - v = t. integrating factor u = e^(-t) (v e^(-t)) ' = t e^(-t). Integrating both sides yields v e^(-t) = -t*e^(-t) - e^(-t) + c v = -t - 1 + c e^t, u^(-1) = (-t - 1 + c e^t) u = (-t - 1 + c e^t)^(-1) = 1 / (-t - 1 + c e^t) u = y + 1 y + 1 = 1 / (-t - 1 + c e^t) y = y + 1 = 1 / (-t - 1 + c e^t) - 1 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!