Assignment 4

course Mth 272

x}w툿assignment #004

004. `query 4

Applied Calculus II

02-02-2009

......!!!!!!!!...................................

20:41:48

4.6.06 (was 4.5.06) y = C e^(kt) thru (3,.5) and (4,5)

......!!!!!!!!...................................

RESPONSE -->

First the values of x and y must be plugged into the equations

.5=Ce^(3k)

5=Ce^(4k) then division

5/.5= (Ce^(4k)) / (Ce^(3k))

factor out a Ce^(3k) and an e^k is left over and 5/.5 is 10

so 10=e^k then take the ln of each side

k= ln(10) or 2.3

then plug in the values .5=Ce^(ln(10)*3))

.5=Ce^(6.9) then divide

C= .5/e^(6.9)= .00054

so the model is y=.00054e^(2.3t)

confidence assessment: 3

.................................................

......!!!!!!!!...................................

20:42:07

Substituting the coordinates of the first and second points into the form y = C e^(k t) we obtain the equations

.5 = C e^(3*k)and

5 = Ce^(4k) .

Dividing the second equation by the first we get

5 / .5 = C e^(4k) / [ C e^(3k) ] or

10 = e^k so

k = 2.3, approx. (i.e., k = ln(10) )

Thus .5 = C e^(2.3 * 3)

.5 = C e^(6.9)

C = .5 / e^(6.9) = .0005, approx.

The model is thus close to y =.0005 e^(2.3 t). **

......!!!!!!!!...................................

RESPONSE -->

got it

self critique assessment: 3

.................................................

......!!!!!!!!...................................

22:06:30

4.6.10 (was 4.5.10) solve dy/dt = 5.2 y if y=18 when t=0

......!!!!!!!!...................................

RESPONSE -->

The problem can be integrated, from the form of

y`/y=5.2t` which becomes

ln(y)=5.2t+c then its put into terms of e

e^(lny) which will = y = e^(5.2t+c)

so y= Xe^(5.2t) and when t=0 and y= 18

18= Xe^(5.2*0)

X=18

the model is

y=18e^(5.2t)

confidence assessment: 3

.................................................

......!!!!!!!!...................................

22:06:41

The details of the process:

dy/dt = 5.2y. Divide both sides by y to get

dy/y = 5.2 dt. This is the same as

(1/y)dy = 5.2dt. Integrate the left side with respect to y and the right with respect to t:

ln | y | = 5.2t +C. Therefore

e^(ln y) = e^(5.2 t + c) so

y = e^(5.2 t + c). This is the general function which satisfies dy/dt = 5.2 y.

Now e^(a+b) = e^a * e^b so

y = e^c e^(5.2 t). e^c can be any positive number so we say e^c = A, A > 0.

y = A e^(5.2 t). This is the general function which satisfies dy/dt = 5.2 y.

When t=0, y = 18 so

18 = A e^0. e^0 is 1 so

A = 18. The function is therefore

y = 18 e^(5.2 t). **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:22:30

4.6.25 (was 4.5.25) init investment $750, rate 10.5%, find doubling time, 10-yr amt, 25-yr amt) New problem is init investment $1000, rate 12%.

......!!!!!!!!...................................

RESPONSE -->

for this one the numbers must be plugged into the exponential growth formula for doubling

so 750e^(.105t)=750*2 then division of 750

e^(.105t)=2 then ln of this

.105t=ln(2) then division

t=6.6 years

when t is 10 years

amount= 750e^(.105)(10)= $2143.24

amount= 750e^(.105)(25)= $10353.43

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:22:39

When rate = .105 we have

amt = 1000 e^(.105 t) and the equation for the doubling time is

750 e^(.105 t) = 2 * 750. Dividing both sides by 750 we get

e^(.105 t) = 2. Taking the natural log of both sides

.105t = ln(2) so that

t = ln(2) / .105 = 6.9 yrs approx.

after 10 years

amt = 750e^.105(10) = $2,143.24

after 25 yrs

amt = 7500 e^.105(25) = $10,353.43 *

......!!!!!!!!...................................

RESPONSE -->

got it

self critique assessment: 3

.................................................

......!!!!!!!!...................................

23:44:08

4.6.44 (was 4.5.42) demand fn p = C e^(kx) if when p=$5, x = 300 and when p=$4, x = 400

......!!!!!!!!...................................

RESPONSE -->

this is similar to a previous problem, just different values.

the 2 equations are 5=ce^(300k)

4= Ce^(400k) then division

5/4= Ce^(300k)/ Ce^(400k)

5/4= e^(-100k) then ln of both sides

ln(5/4)= -100k and division

k=-.0022 then plug into an equation

5=Ce^(300*-.0022) division

5/e^(.66)= C

C= approx 9.77

so the model is

p=9.77e^(-.0022t)

confidence assessment: 3

.................................................

......!!!!!!!!...................................

23:48:30

You get 5 = C e^(300 k) and 4 = C e^(400 k).

If you divide the first equation by the second you get

5/4 = e^(300 k) / e^(400 k) so

5/4 = e^(-100 k) and

k = ln(5/4) / (-100) = -.0022 approx..

Then you can substitute into the first equation:

}

5 = C e^(300 k) so

C = 5 / e^(300 k) = 5 / [ e^(300 ln(5/4) / -100 ) ] = 5 / [ e^(-3 ln(5/4) ] .

This is easily evaluated on your calculator. You get C = 9.8, approx.

So the function is p = 9.8 e^(-.0022 t). **

......!!!!!!!!...................................

RESPONSE -->

got it

self critique assessment: 3

.................................................

&#This looks very good. Let me know if you have any questions. &#