course Mth 272 ø}ØÆôŽˆ‡Žþ“Ÿ|¸Ùƒ©™•assignment #032
......!!!!!!!!...................................
15:07:54 Query problem 7.8.6 integrate (x^2+y^2) with respect to y from x^2 to `sqrt(x)
......!!!!!!!!...................................
RESPONSE --> integrate with respect to y x^2y + y^3/3 is the antideriv. x^2(sqrt(x) + (sqrt(x))^3/3 - x^2(x^2) + (x^2)^3/3 x+x^2/3 - x^4 + x^6/3 confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:07:59 What is your result?
......!!!!!!!!...................................
RESPONSE --> answered confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:08:07 What was your antiderivative?
......!!!!!!!!...................................
RESPONSE --> answered confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:18:08 Query problem 7.8.14 integrate `sqrt(1-x^2) from 0 to x wrt y then from 0 to 1 wrt x
......!!!!!!!!...................................
RESPONSE --> first the anti deriv [2/3(1-x^2)^3/2]from 0 to x 2/3[(1-x^2)^3/2- (1-0^20^3/2] (1-x^2)^3/2 - 1 2/3[-x^3] =-2/3x^3 integ from 0 to 1 = -8/3x^4 -8/3(1)^4 - (-8/3(0)^4) =-8/3 confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:18:14 What is your result?
......!!!!!!!!...................................
RESPONSE --> answered confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:18:38 What is your result?
......!!!!!!!!...................................
RESPONSE --> confidence assessment:
.................................................
......!!!!!!!!...................................
15:19:37 With respect to which variable of integration did you first integrate?
......!!!!!!!!...................................
RESPONSE --> x confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:19:45 What was the antiderivative of your first integration and what was the definite integral you obtained when you substituted the limits?
......!!!!!!!!...................................
RESPONSE --> answered confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:19:49 What did you get when you integrated this expression with respect to the remaining variable of integration?
......!!!!!!!!...................................
RESPONSE --> confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:23:53 Query problem 7.8.32 sketch region and reverse order of integration for integral of 1 from 0 to 4-y^2, then from -2 to 2.
......!!!!!!!!...................................
RESPONSE --> integ -2 to 2 [x] from 0 to 4-y^2 = (4-y^2) -(0) dy =[4y-y^3/3] from -2 to 2 4(2) - (2)^3/3 - (4(-2) + (2)^3/3) = -16/3 = area confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:24:04 What are the limits, inner limit first, when the order of integration was changed?
......!!!!!!!!...................................
RESPONSE --> confidence assessment:
.................................................
......!!!!!!!!...................................
15:24:39 Describe the region in the xy plane whose area is given by the given integral.
......!!!!!!!!...................................
RESPONSE --> it is a rectangular peice, under a lareger curve confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:26:55 Explain how you obtained the limits for the integral when the order of integration was changed.
......!!!!!!!!...................................
RESPONSE --> confidence assessment:
.................................................
......!!!!!!!!...................................
15:27:06 What did you get when you evaluated the original integral?
......!!!!!!!!...................................
RESPONSE --> answered confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:27:31 What did you get when you evaluated the integral with the order of integration reversed?
......!!!!!!!!...................................
RESPONSE --> im not sure how to get the new limits confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:28:13 Why should both integrals give you the same result?
......!!!!!!!!...................................
RESPONSE --> becuase they are describing the same area confidence assessment: 3
.................................................
......!!!!!!!!...................................
16:27:51 Query problem 7.8.40 Area beneath curve 1/`sqrt(x-1) for 2 <= x <= 5
......!!!!!!!!...................................
RESPONSE --> the two limits, i think are 0 to y and 2 to 5 integrate (x-1)^-1/2 = 2(x-1)^1/2 2[(y-1)^1/2 - (0-1)^1/2] = (2y-1)^1/2 - 2 (2(5)-1)^1/2-2 - (2(2)-1)^1/2 - 2 = 1.2679 confidence assessment: 3
.................................................
......!!!!!!!!...................................
16:27:59 What are the limits and the order of integration for the double integral you used to find the area?
......!!!!!!!!...................................
RESPONSE --> confidence assessment: 3
.................................................
......!!!!!!!!...................................
16:28:01 What is the area?
......!!!!!!!!...................................
RESPONSE --> confidence assessment: 3
.................................................
......!!!!!!!!...................................
16:28:33 Query problem 7.8.44 area bounded by xy=9, y=x, y=0, x=9
......!!!!!!!!...................................
RESPONSE --> i didnt really understand how to do this one could you explain? confidence assessment:
.................................................
......!!!!!!!!...................................
16:28:36 What is the area of the region?
......!!!!!!!!...................................
RESPONSE --> confidence assessment:
.................................................
......!!!!!!!!...................................
16:28:38 Describe the region in detail.
......!!!!!!!!...................................
RESPONSE --> confidence assessment:
.................................................
......!!!!!!!!...................................
16:28:40 Did you have to use one double integral or two to find the area?
......!!!!!!!!...................................
RESPONSE --> confidence assessment:
.................................................
......!!!!!!!!...................................
16:28:42 What was the order of integration and what were the limits you used for each integral?
......!!!!!!!!...................................
RESPONSE --> confidence assessment:
.................................................
......!!!!!!!!...................................
16:29:26 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE --> This one was pretty difficult. I didn't understand how to set up the last one. If you could explain a little that would be much appreciated. Thankyou. confidence assessment: 3
.................................................