query 10

#$&*

course Mth 173

6/14 11:40 pm

010. `query 10

*********************************************

Question: `q query problem 1.6.7 5th ed; 1.6.12 4th; 1.6.9 (was 1.10.16)cubic polynomial representing graph. What cubic polynomial did you use to represent the graph?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This function has zeroes at (x+2) (x-1) (x-5)

G(x) = k (x+2) (x-1) (x-5)

2 = k (0+2) (0-1) (0-5)

So k = 0.20

G(x) = 0.20 (x+2) (x-1) (x-5)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

*&*& The given function has zeros at x = -2, 1, 5, so y = k (x+2)(x-1)(x-5).

At x = 0 the function has value 2, so 2 = k (0+2)(0-1)(0-5), or 2 = 10 k.

Thus k = .2 and the function is

y = .2 ( x+2)(x-1)(x-5). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Ok

------------------------------------------------

Self-critique Rating: Ok

*********************************************

Question: `q Query problem 1.6.14 5th ed; 1.6.15 4th ed; 1.6.15 (formerly 1.4.19) s = .01 w^.25 h^.75what is the surface area of a 65 kg person 160 cm tall?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

S= .01 w^.25 h^.75

(160)^ .75 * 65^ .25

=127.7 cm^2

confidence rating #$&*:1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Substituting we get

s = .01 *65^.25 *160^.75 = 1.277meters^2 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I didn’t convert to meters

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `q What is the weight of a person 180 cm tall whose surface area is 1.5 m^2?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

s = .01 w^.25 h^.75

1.5 = 180^.75 * .01 w^.25

1.5 = .491 * w^.25

W^.25= 3.05

W= 86.5kg

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Substituting the values we get

1.5 = .01 w^.25*180^.75 . Dividing both sides by 180:

1.5/180^.75

.01w^.25. Dividing both sides by .01:

3.05237 = w^.25 Taking the fourth power of both sides:

w = 3.052^4 = 86.806 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Ok

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `q For 70 kg persons what is h as a function of s?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

s = .01 w^.25 h^.75

s= .01 (70) ^.25 h^.75

s= .0289 h^.75

h= .75 sqaure root (s/ .0289

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Substituting 70 for the weight we get

s = .01 *70^.25 h^.75

s = .02893 h^.75

s/.02893 = h^.75

34.60 s = h^.75

Taking the 1/.75 = 4/3 power of both sides:

(34.60 s)^(4/3) = h

h = 111 s^(4/3), approximately **

STUDENT QUESTION

Ok don’t understand where the 4/3 comes from but do understand that you need this to establish the resultant.

INSTRUCTOR RESPONSE

To solve

• 34.60 s = h^.75

for h you need to take the 1/.75 power of both sides, which gives you

(34.60 s)^(1/.75) = (h^.75)^(1/.75). The right-hand side becomes h^(.75 * (1/.75) ) = h^1 = h, so we have

h = (34.60 s)^(1 / .75). Since 1 / .75 reduces to 4/3, we have

h = (34.70 s)^(4/3).

1 / .75 = 4/3 for the same reason $1.00 / $.75 = 4/3 (ratio of four quarters to three quarters, where by 'quarter' I mean the coin we most commonly put into vending machines).

More formally 1 / .75 means 1.00 / .75 = 100 / 75. Dividing numerator and denominator by 25 reduces this to 4/3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Ok

------------------------------------------------

Self-critique Rating:

Ok

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

Ok

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#This looks very good. Let me know if you have any questions. &#