qa as 6

course mth 271

I thought I had finished the orientation but I will go back over it. Thank you for you input

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

006. goin' the other way

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: `qNote that there are 7 questions in this assignment.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: `q001. If the water and a certain cylinder is changing depth at a rate of -4 cm/sec at the t = 20 second instant, at which instant the depth is 80 cm, then approximately what do you expect the depth will be at the t = 21 second instant?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

With the information given the time between T=20 and T=21 is one sec and the rate of change at T=20 is –4cm/sec . We would take change in depth times time then add to given depth at t= 20 1sec * -4 cm/sec +80cm = 76cm at clock time T= 21

The approximate depth is 76cm

Confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aAt a rate of -4 cm/s, for the 1-second interval between t = 20 s and t = 21 s the change in depth would be -4 cm/s * 1 sec = -4 cm. If the depth was 80 cm at t = 20 sec, the depth at t = 21 sec would be 80 cm - 4 cm/ = 76 cm.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: `q002. Using the same information, what the you expect the depth will be depth at the t = 30 sec instant? Do you think this estimate is more or less accurate than the estimate you made for the t = 21 second instant?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

As before set the problem up the same way the time difference from T=20 to T=30 would be 10 sec the rate of change at T=20 is –4cm/sec and depth is 80 cm .

Then we 10sec * -4cm/sec +80 cm = 40 cm at T=30 this is not a real accurate estimate the one fort=21 would be much closer to what I would except to see in the real world .

Confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aAt - 4 cm/s, during the 10-second interval between t = 20 sec and t = 30 sec we would expect a depth change of -4 cm/sec * 10 sec = -40 cm, which would result in a t = 30 sec depth of 80 cm - 40 cm = 40 cm.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: `q003. If you know that the depth in the preceding example is changing at the rate of -3 cm/s at the t = 30 sec instant, how will this change your estimate for the depth at t = 30 seconds--i.e., will your estimate be the same as before, will you estimate a greater change in depth or a lesser change in depth?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

My estimate would have been for a lesser change in depth I would have said the depth would have been more like 35cm at T=30

Confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aSince the rate of depth change has changed from -4 cm / s at t = 20 s to -3 cm / s at t = 30 s, we conclude that the depth probably wouldn't change as much has before.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: `q004. What is your specific estimate of the depth at t = 30 seconds?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I would estimate it to be 45cm at T=30 .By using the average change of –3.5cm/sec over the 10 sec of time change from T=20 to T=30 and the start depth of 80 cm

Confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aKnowing that at t = 20 sec the rate is -4 cm/s, and at t = 30 sec the rate is -3 cm/s, we could reasonably conjecture that the approximate average rate of change between these to clock times must be about -3.5 cm/s. Over the 10-second interval between t = 20 s and t = 30 s, this would result in a depth change of -3.5 cm/s * 10 sec = -35 cm, and a t = 30 s depth of 80 cm - 35 cm = 45 cm.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: `q005. If we have a uniform cylinder with a uniformly sized hole from which water is leaking, so that the quadratic model is very nearly a precise model of what actually happens, then the prediction that the depth will change and average rate of -3.5 cm/sec is accurate. This is because the rate at which the water depth changes will in this case be a linear function of clock time, and the average value of a linear function between two clock times must be equal to the average of its values at those to clock times.

If y is the function that tells us the depth of the water as a function of clock time, then we let y ' stand for the function that tells us the rate at which depth changes as a function of clock time.

If the rate at which depth changes is accurately modeled by the linear function y ' = .1 t - 6, with t in sec and y in cm/s, verify that the rates at t = 20 sec and t = 30 sec are indeed -4 cm/s and -3 cm/s.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

With the function y=.1t-6 substitute T=20 we get y=.1(20)-6 = 2-6 = -4cm/sec

Then substitute T=30 we get y=.1(30)-6 = 3-6 = -3cm/sec

Confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aAt t = 20 sec, we evaluate y ' to obtain y ' = .1 ( 20 sec) - 6 = 2 - 6 = -4, representing -4 cm/s.

At t = 30 sec, we evaluate y' to obtain y' = .1 ( 30 sec) - 6 = 3 - 6 = -3, representing -3 cm/s.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: `q006. For the rate function y ' = .1 t - 6, at what clock time does the rate of depth change first equal zero?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

We set the y to 0 the solve for t . 0=.1t-6 add6 to both sides we have 6=.1t then multiply both sides by ten we have t=60 sec

Confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe rate of depth change is first equal to zero when y ' = .1 t - 6 = 0. This equation is easily solved to see that t = 60 sec.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: `q007. How much depth change is there between t = 20 sec and the time at which depth stops changing?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

At T=20 the rate of change is –4cm/sec and at T=60 the rate of change is 0cm/sec the average is –2cm/sec now the time change between T=20 and T=60 is 40sec so we have 40sec*-2cm/sec +80 cm =-80cm+80cm +0cm at clock time T=60

Confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe rate of depth change at t = 20 sec is - 4 cm/s; at t = 60 sec the rate is 0 cm/s. The average rate at which depth changes during this 40-second interval is therefore the average of -4 cm/s and 0 cm/s, or -2 cm/s.

At an average rate of -2 cm/s for 40 s, the depth change will be -80 cm. Starting at 80 cm when t = 20 sec, we see that the depth at t = 60 is therefore 80 cm - 80 cm = 0.

"

&#Your work looks very good. Let me know if you have any questions. &#