#$&* course M 277 1-18 11 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: `aThe Pythagorean Theorem applies to any point (x,y) on the unit circle, where we can construct a right triangle with horizontal and vertical legs x and y and hypotenuse equal to the radius r of the circle. Thus by the Pythagorean Theorem we have x^2 + y^2 = r^2. Now since sin(theta) = y/r and cos(theta) = x/r, we have sin^2(theta) + cos^2(theta) = (y/r)^2 + (x/r)^2 = y^2/r^2 + x^2/r^2 = (y^2 + x^2) / r^2 = r^2 / r^2 = 1. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I think we have approx. the same solution, let me know if I’m missing something. ------------------------------------------------ Self-critique Rating:3 ********************************************* Question: `q002. Using the fact that sin^2(theta) + cos^2(theta) = 1, prove that tan^2(theta) + 1 = sec^2(theta). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1st, tan = sin/cos and sec = 1/cos so equation tan^2(theta) + 1 = sec^2(theta) = (sin/cos)^2 + 1 = (1/cos)^2 sin^2/cos^2 + 1 = 1/cos^2 sin^2 + 1*cos^2 = cos^2/cos^2 sin^2 + cos^2 = 1, which is what we just proved last problem, QED ( right?thats what you put once right and left sides are equal? I think I remember that anyway) confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aStarting with tan^2(theta) + 1 = sec^2(theta) we first rewrite everything in terms of sines and cosines. We know that tan(theta) = sin(theta)/cos(theta) and sec(theta) = 1 / cos(theta). So we have sin^2(theta)/cos^2(theta) + 1 = 1 / cos^2(theta). If we now simplify the equation, multiplying both sides by the common denominator cos^2(theta), we get sin^2(theta)/cos^2(theta) * cos^2(theta)+ 1 * cos^2(theta)= 1 / cos^2(theta) * cos^2(theta). We easily simplify this to get sin^2(theta) + cos^2(theta) = 1, which is thus seen to be equivalent to the original equation tan^2(theta) + 1 = sec^2(theta). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q003. Prove that csc^2(theta) - cot^2(theta) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1st, csc = 1/sin and cot = cos/sin so equation csc^2(theta) - cot^2(theta) = 1 is same as (1/sin)^2 – (cos/sin)^2 = 1 (1/sin)^2 – (cos/sin)^2 = 1 1/sin^2 - cos^2/sin^2 = 1, mult through by sin^2 we get 1 - cos^2 = sin^2, which is the same equation as 1 = cos^2+sin^2, which is what we just proved in 1st problem. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aRewriting in terms of sines and cosines we get 1 / sin^2(theta) - cos^2(theta)/sin^2(theta) = 1. We now multiply through by the common denominator sin^2(theta) to get 1 / sin^2(theta) * sin^2(theta) - cos^2(theta)/sin^2(theta) * sin^2(theta) = 1 * sin^2(theta), or 1 - cos^2(theta) = sin^2(theta). This is easily rearranged to give us sin^2(theta) + cos^2(theta) = 1, which we know to be true. The original equation is thus equivalent to this true equation, and is therefore true. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q003. Prove that csc^2(theta) - cot^2(theta) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1st, csc = 1/sin and cot = cos/sin so equation csc^2(theta) - cot^2(theta) = 1 is same as (1/sin)^2 – (cos/sin)^2 = 1 (1/sin)^2 – (cos/sin)^2 = 1 1/sin^2 - cos^2/sin^2 = 1, mult through by sin^2 we get 1 - cos^2 = sin^2, which is the same equation as 1 = cos^2+sin^2, which is what we just proved in 1st problem. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aRewriting in terms of sines and cosines we get 1 / sin^2(theta) - cos^2(theta)/sin^2(theta) = 1. We now multiply through by the common denominator sin^2(theta) to get 1 / sin^2(theta) * sin^2(theta) - cos^2(theta)/sin^2(theta) * sin^2(theta) = 1 * sin^2(theta), or 1 - cos^2(theta) = sin^2(theta). This is easily rearranged to give us sin^2(theta) + cos^2(theta) = 1, which we know to be true. The original equation is thus equivalent to this true equation, and is therefore true. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: #*&!