#$&* course Mth 277 2/8 2 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the equation of the plane containing the point P(-1,3,2) and having normal vector N = 3j - 1k. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Direction numbers [0, 3, -1] Parametric Form x = -1, y = 3 + 3t, z = 2 - t Equation of the plane 3(3 + 3t) - (2 - t) = 0 t = -7/10 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find two unit vectors perpendicular to the plane x + 3y - 4z = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ??????Could use some help with this one, I believe its centered around the normal vector????????
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the distance between the point (-1,2,1) and the plane which contains the point (3,3,-2) and is normal to the vector N = -2i + j + 3k. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Distance = |QP dot N| / ||N|| QP dot N = 16 ||N|| = `sqrt(14) Distance = 16/`sqrt(14) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the distance between the lines (x+1)/-2 = (y+2)-2 = (z+1)/-1 and (x-4)/5 = (y+1)/2 = (z-1)/3 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: L_1: x = -1 - 2s, y = -2 - 2s, z = -1 - s L_2: x = 4 + 5t, y = -1 + 2t, z = 1 + 3t Find pt Q on plane#1 by setting s = 0 x = -1, y = -2, z = -1, so Q(1, -2,-1) is our pt. We have vectors v_1 = <-2, -2, -1> and v_2 = <5, 2, 3>, which are parallel to L_1 and L_2 Taking cross product of v_1 and v_2 N = V_1 X v_2 = -4i + j + 6k Letting t = 0 we see the pt (4, -1, 1), so equation for plane#2 -4(x - 4) + (y + 1) + 6(z - 1) = 0 = -4x + y + 6z - 11 = 0 Dist from L_1 to L_2 is the same as Q(1, -2, -1) to the plane#2 so, Distance = |-4(1) + (-2) + 6(-1) - 11| / `sqrt(-4^2 + 1^2 + 6^2) = 23/`sqrt(53) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the equation of the sphere with center C(-2,7,1) and tangent the the plane x + 4y - 2z = 10. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: First we find radius r = |(-2 + 4(7) - 2(1) - 10) / `sqrt(1^2 + 4^2 + (-2)^2)| = |14/`sqrt(21)| Equation of the sphere (x + 2)^2 + (y - )^2 + (z - 1)^2 = (14/`sqrt(21))^2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):