#$&* course Mth 277 2-27 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Given the position vector of a particle R(t) = (cos t)i + tj + (4 sin t)k, find the particle's velocity and acceleration vectors and then find the speed and direction of the particle at t = pi/2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: V= dR/dt = -sin(t)i + j + 4cos(t)k Accel = dV/dt = -cos(t)i - 4sin(t)k Speed = ||V|| = `sqrt(-sin(t)^2+ 1^2 + 4cos(t)^2) = `sqrt(-sin(t)^2+ 1+ 16cos(t)^2) = sqrt(1 - sin(t)^2+ 16cos(t)^2) = `sqrt(cos(t)^2+ 16cos(t)^2) = `sqrt(17cos(t)^2) =`sqrt(17)*|cos(t)| Speed at t = `pi/2 ||V(`pi/2)|| = `sqrt(-sin(`pi/2)^2+ 1^2 + 4cos(`pi/2)^2) = `sqrt(1+ 1+ 0)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find Int(
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find Integral((e^t)*
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the velocity and position vectors given the acceleration vector `A(t) = 4(t^2)i - 2 sqrt(t) j + 5(e^3t)k, initial position R(0) = 2i + j -3k and initial velocity v(0) = 4i + j + 2k. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1st we find anti derivative of accel. fn. `A(t) = 4(t^2)i - 2 sqrt(t) j + 5(e^3t)k Int([4(t^2)i - 2 sqrt(t) j + 5(e^3t)k] dt) = [(4t^3)/3 + c_1]i - [(4/3)t^(3/2) + c_2]j + [(5/3)e^3t + c_3]k = [(4t^3)/3]i - [(4/3)t^(3/2)]j + [(5/3)e^3t]k + c_1i + c_2j + c_3k v(t) = [(4t^3)/3]i - [(4/3)t^(3/2)]j + [(5/3)e^3t]k + [c_1i + c_2j + c_3k] Where [c_1i + c_2j + c_3k] is our C term, plugging in our init. condition v(0) = 4i + j + 2k. v(t) = [(4t^3)/3]i - [(4/3)t^(3/2)]j + [(5/3)e^3t]k + C v(0) = [(4*0^3)/3]i - [(4/3)*0^(3/2) + 1]j + [(5/3)e^3*0]k + C = k + C Now using init cond 4i + j + 2k = k+C 4i = c_1i c_1 = 4 j = c_2j c_2 = 1 2k = k + c_3k c_3 = 1 So we have solved for init cond and v(t) = [(4t^3)/3 + 4]i - [(4/3)t^(3/2) + 1]j + [(5/3)e^3t + 1]k Now we find position v(t) = dR/dt = [(4t^3)/3 + 4]i - [(4/3)t^(3/2) + 1]j + [(5/3)e^3t + 1]k, solving differential equ.. dR/dt = [(4t^3)/3 + 4]i - [(4/3)t^(3/2) + 1]j + [(5/3)e^3t + 1]k Int( dR) = Int([(4t^3)/3 + 4]i - [(4/3)t^(3/2) + 1]j + [(5/3)e^3t + 1]k] dt) R(t) = Int([(4t^3)/3 + 4]i - [(4/3)t^(3/2) + 1]j + [(5/3)e^3t + 1]k dt) Int((4/3)t^3 + 4 dt)i = [(1/3)t^4 + 4t)]i Int((4/3)t^(3/2) + 1 dt)j =[(8/15)t^(5/2) + t]j Int([(5/3)e^3t + 2 dt)k = [(5/9)e^3t + t]k So R(t) = [(1/3)t^4 + 4t + c_1)]i - [(8/15)t^(5/2) + t + c+2]j + [(5/9)e^3t + t + c_3]k = [(1/3)t^4 + 4t)]i - [(8/15)t^(5/2) + t]j + [(5/9)e^3t + t]k + c_1i + c_2j + c_3k = [(1/3)t^4 + 4t)]i - [(8/15)t^(5/2) + t]j + [(5/9)e^3t + t]k + [c_1i + c_2j + c_3k] Where [c_1i + c_2j + c_3k] is our C term, using our init. condition R(0) = 2i + j -3k R(t) = [(1/3)t^4 + 4t)]i - [(8/15)t^(5/2) + t]j + [(5/9)e^3t + t]k + C R(0) = [(1/3)0^4 + 4*0)]i - [(8/15)0^(5/2) + 0]j + [(5/9)e^3*0 + 2*0]k + C = k +C 2i + 1j - 3k = k + C We solve separate equations 2i = C_1i, c_1 = 2 j = c_2j, c_2 = 1 -3k = k + c_3k, c_3 = -4 2i + j - 4k = C So position at any t is R(t) = ((1/3)t^4 + 4t)i - ((8/15)t^(5/2) + t)j + ((5/9)e^3t +t)k + [2i + j -4k] =((1/3)t^4 + 4t + 2) i - ((8/15)t^(5/2) + t + 1)j + ((5/9)e^3t +t - 4)k confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: F(t) = e^(-kt)i + e^(kt)k. Show that F and F'' are parallel. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: For F(t) = e^(-kt)i + e^(kt)k F = -ke^(-kt)i + ke^(kt)k F = -k^2e^(-kt) + k^2e^(kt) = -k^2e^(-kt)i + k^2e^(kt)k = k^2(e^(-kt)i + e^(kt)k) Components are the same except for F(t) has scalar mult. constant of k^2 for both terms confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: