#$&* course Mth 277 2-27 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find T(t) and N(t) when R(t) = (e^-2t cost)i + (e^-2t sint )j + e^-2t. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: T(t) = R’(t)/||R’(t)|| R’(t) = (-2e^(-2t)cos(t) - e^(-2t)sin(t))i + (-2e^-2t sint + e^(-2t)cos(t) )j - 2e^-2t =-2e^(-2t)[( cos(t) -.5sin(t))i + (sint + .5cos(t) )j + 1] ||R’(t)|| = `sqrt((-2e^(-2t)cos(t) - e^(-2t)sin(t))^2 + (-2e^-2t sint + e^(-2t)cos(t))^2 + (-2e^(-2t))^2) =`sqrt((-4e^(-4t)cos^2(t) - e^(-4t)sin^2(t)) + (-4e^-4t sin^2t + e^(-4t)cos^2(t)) +(-4e^(- 4t))) = `sqrt(-4e^(-4t)cos^2(t) - 4e^-4t sin^2t-e^(-4t)sin^2(t)+e^(-4t)cos^2(t)-4e^(-4t)) =`sqrt(-4e^(-4t)[cos^2(t) + sin^2(t)] - e^(-4t) [sin^2(t) - cos^2(t)]- 4e^(-4t)) = `sqrt(-8e^(-4t) - e^(-4t) [sin^2(t) - cos^2(t)]) =`sqrt (-e^(-4t)( 8 + (sin^2(t) - cos^2(t))) So that R’(t)/||R’(t)|| [1/`sqrt (-e^(-4t)( 8 + (sin^2(t) - cos^2(t)))]*[ -2e^(-2t)[( cos(t) -.5sin(t))i + (sint + .5cos(t) )j + 1] =< -2e^(-2t)( cos(t) -.5sin(t))/ `sqrt (-e^(-4t)( 8 + (sin^2(t) - cos^2(t))), -2e^(-2t )(sint + .5cos(t))/ `sqrt (-e^(-4t)( 8 + (sin^2(t) - cos^2(t))) ???I’m not sure about this problem, is the e^-2t term in R(t) supposed to be the k component. I also believe I have messed up my calculations somewhere?????????????????
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the curvature of the plane curve y = sin (-3x) at x = pi/2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: k = ( |f’’(x)|/((1+ [f’(x)]^2)^(3/2))) Where… f’(x) = -3cos(-3x) f’(`pi/2) = 0 f’’(x) = -9sin(-3x) f’’(`pi/2) = -9 k = ( |f’’(x)|/((1+ [f’(x)]^2)^(3/2))) k = 9/(1+0)^(3/2) = 9 So curve of plane is equal to 9. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Let C be the curve given by R(t) = (1-cos t)i + (t-sin t)j + (4sin(t/2))k • Find the unit tangent vector T(t) to C • Find dT/ds and the curvature k(t) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To find T(t) we find the following R’(t) = (sin(t))i + (1-cos(t))j + (2cos(t/2))k ||R’(t)|| = `sqrt((sin(t))^2 + (1-cos(t))^2 + (2cos(t/2))^2) = `sqrt(sin(t)^2 + sin(t)^2 + (2(+-`sqrt((1+cos(t))/2)))^2)) == `sqrt(sin(t)^2 + sin(t)^2 + 4(1+cos(t)/2)) =`sqrt(2 sin(t)^2 + 2+2cos(t)^2) = `sqrt(2(sin(t)^2 + 1 + cos(t)^2)) = `sqrt(2(1 + 1 )) = `sqrt(4) = 2 T(t) = R’(t)/||R’(t)|| = (sin(t))i + (1-cos(t))j + (2cos(t/2))k/2 Now we find k(t) T’(t) = (cos(t)/2)i + (sin(t)/2)j + (cos(t/2)/2)k ||T’(t)|| = `sqrt( (cos(t)/2)^2 + (sin(t)/2)^2 + (cos(t/2)/2)^2) =`sqrt((1/2)*(cos(t)^2 + sin(t)^2 + cos(t/2)) =`sqrt((1/2)*(1 + cos(t/2)^2)) =`sqrt((1/2)*(1 +(+-`sqrt((1 + cos(t))/2))^2)) = `sqrt((1/2)*(1 +(1/2) + cos(t)/2)) = `sqrt((1/2)*(1.5+ cos(t)/2)) = `sqrt(.75 + cos(t)/4)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the maximum curvature for the curve y = e^3x. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: For f(x) = e^(3x) f’(x) = 3e^(3x) and f’’(x) = 9e^(3x) So curvature is k = 9e^(3x)/((1+(3e^(3x))^2)^(3/2)) =9e^(3x)/(1+3e^(6x))^(3/2)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: If T and N are the unit tangent and normal vectors on the trajectory of a moving body, we can define B = T X N to be the unit binormal vector. A coordinate system with three planes can be made at each point with these vectors since they are mutually orthogonal. • Show that T is orthogonal to dB/ds (Hint: Differentiate B dot T) • Show that B is orthogonal to dB/ds (Hint: Differentiate B dot B) • Show that dB/ds = -(tau)N for some constant tau. (We call the constant tau the torsion of the trajectory) • **Prove the Frenet-Serret formulas: (dT/ds = kN, dN/ds = -kT + tauB, dB/ds = -tauN). Where k is the curvature and tau = tau(s) is a scalar function. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (B dot T)’(s) = (B’dot T)(s) + (B dot T’)(s), we know B’ is orthogonal to B and T’ is orthogonal to T = (dB/ds Dot T(s)) + (B(s) Dot dT/ds) ????I’m having a hard time understanding how to approach this problem???????