#$&* course Mth 277 3/21 1 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: z = x y + 1 = cos(3t) * cot(3 t) + 1, so dz/dt = (cos(3t)) ' cot(3t) + cos(3t) (cot(3t) ) ' = -3 sin(3t) cot(3t) - cos(3 t) sec^2(3 t), which could be simplified. Using the chain rule dz/dt = dz/dx dx/dt + dz/dy dy/dt = y * (-3 sin(3t) ) + x * (-sec^2(3 t)) = -3 sin(3 t) cot(3 t) + cos(3 t) * (-sec^2(3 t) ), which could also be simplified but is clearly equal to the previous expression. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ????Not sure if Im correct but wouldnt derivative of cot(3t) = -3csc^2(3t) not sec^2(3 t)??? I think tan(t) = -sec^2(t) but cot(3t) = -3csc^2(3t)??????
.............................................
Given Solution: z = x^2 + y^2 = (u cos(v))^2 + (u + v^2) ^ 2 = u^2 cos^2(v) + u^2 + 2 u v^2 + v^4. So z_u = 2 u cos^2(v) + 2 u + 2 v^2 and z_v = -2 u^2 cos(v) sin(v) + 4 u v + 4 v^3. Applying the chain rule: F_x = 2 x and F_y = 2 y. dx/du = cos(v), dx/dv = - u sin(v), dy/du = 1 and dy/dv = 2 v. Thus dz/du = dz/dx * dx/du + dz/dy * dy/du = 2 x * cos(v) * 2 v + 2 y * 1 = 2 u cos(v) * cos(v) + 2 (u + v^2) * 1. When simplified this agrees with our previous result z_u = 2 u cos^2(v) + 2 u + 2 v^2 . dz/dv works out in an analogous manner. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I messed up somewhere in my approach or logic Im not sure which one???? Self-critique rating: ********************************************* Question: `q003. Find w_r where w = e^(x - y + 3z^2) and x = r + t - s, y = 3r - 2t, z = sin(rst). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: w_r = (dw/dx)(dx/dr) + (dw/dy)(dy/dr) + (dw/dz)(dz/dr) (dw/dx) = d/dx(e^(x - y + 3z^2)) = f(g(h)) f(z) = e^(z), g(h) = x - y + 3z^2 f(z) = e^(z), g(h) = 1f(g(h)) = 1* e^(x - y + 3z^2) = e^(x - y + 3z^2) (dw/dx) = d/dx(e^(x - y + 3z^2)) = e^(x - y + 3z^2) (dx/dr) = d/dr(r + t - s) = 1 (dw/dy) = d/dy(e^(x - y + 3z^2)) = f(g(h)) f(z) = e^(z), g(h) = x - y + 3z^2 f(z) = e^(z), g(h) = -1f(g(h)) = -1* e^(x - y + 3z^2) = -e^(x - y + 3z^2) (dw/dy) = d/dx(e^(x - y + 3z^2)) = -e^(x - y + 3z^2) (dy/dr) = d/dr(3r - 2t) = 3 (dw/dz) = d/dz(e^(x - y + 3z^2)) = f(g(h)) f(z) = e^(z), g(h) = x - y + 3z^2 f(z) = e^(z), g(h) = 6zf(g(h)) = 6z* e^(x - y + 3z^2) = 6ze^(x - y + 3z^2) (dz/dr) = d/dr(sin(rst)) = f(g(h))f(z) = sin(z), g(h) = rst f(z) = cos(z), g(h) = st f(g(h)) = f(z)*g(h) = st*cos(rst) (dz/dr) = d/dr(sin(rst)) = st*cos(rst) Now to put it al together, w_r = (dw/dx)(dx/dr) + (dw/dy)(dy/dr) + (dw/dz)(dz/dr) = e^(x - y + 3z^2)*1 + e^(x - y + 3z^2)*-1 + 6ze^(x - y + 3z^2)*(st*cos(rst)) = e^(x - y + 3z^2) - e^(x - y + 3z^2) + 6ze^(x - y + 3z^2)*(st*cos(rst)) = 6ze^(x - y + 3z^2)*(st*cos(rst)), where z = sin(rst), x = r + t - s, and y = 3r - 2t 6(sin(rst))e^((r + t - s) - (3r - 2t) + 3 sin(rst)^2)*(st*cos(rst)) = 6st*sin(rst)cos(rst)e^(-2r + 3t - s + 3 sin(rst)^2) So our final answer is w_r = 6st*sin(rst)cos(rst)e^(-2r + 3t - s + 3 sin(rst)^2) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: w_r can be written dw/dr, and we have dw/dr = dw/dx dx/dr + dw/dy dy/dr + dw/dz dz/dr = e^(x - y + 3 z^2) * 1 - e^(x - y + 3 z^2) * 3 + 6 z e^(x - y + 3 z^2) * (r s) cos(r s t). Simplifying and substituting for x, y and z we get (-2 + 6 sin(rst) ) e^(-2 r + 3 t + 3 ( sin^2(rst)) ) &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ?????Im confused about how dw/dy dy/dr = - e^(x - y + 3 z^2) * 3, and isnt just e^(x - y + 3 z^2)*-1 ????? Apart from that my solution is almost the same as yours I believe. ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: Regarding R, R1, R2 and R3 as functions of t, we take the t derivative of both sides and get -1/R^2 dR/dt = -1/R1^2 d(R1)/dt -1/R2^2 d(R2)/dt -1/R3^2 d(R3)/dt so that dR/dt = (-1/R1^2 d(R1)/dt -1/R2^2 d(R2)/dt -1/R3^2 d(R3)/dt) * R^2 Substituting the given values for the three resistances and the three rates of change we get dR/dt = (-1 / (150 ohms)^2 * (-3 ohms/sec) - 1 / (300 ohms) * (+4 ohms/sec) - 1 / (450 ohms) * (-3 ohms/sec) ) * R^2 = 7 / (67500 ohm sec) * (900/11 ohms) ^2 = .69 ohms / sec, approx.. You can verify that for the given values of R1, R2 and R3 we get R = 900/11. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok, so first step take derivative of all values wrt t, getting dR/dt(1/R) = -1/R^2 dR1/dt( 1/(R1)) = -1/R1^2 dR2/dt(1/(R2)) = -1/R2^2 dR3/dt( 1/(R3)) = -1/R3^2 So we know that the change in R wrt t will be the combined changes in R1,R2 and R3 wrt t. Giving us the equation -1/R^2 dR/dt = -1/R1^2 d(R1)/dt -1/R2^2 d(R2)/dt -1/R3^2 d(R3)/dt Now to find roc in R wrt t we mult. thru by -R^2 and get dR/dt = [-1/R1^2 d(R1)/dt -1/R2^2 d(R2)/dt -1/R3^2 d(R3)/dt]-R^2 Now plugging in values for R1,R2 and R3 as well as the roc in R1,R2 and R3 which is given we get.. dR/dt = [-1/(150ohm)^2*(-3ohm/s)-1/(300ohm)^2*(4ohm/s) -1/(450)^2*(-3ohm/s]R^2 =approx. [.00013ohm/s - .00004ohm/s + .000015ohm/s]*-R^2 = approx. .000105ohm/s*-R^2 ?????I understand everything till this point but dont understand how you obtained a value for R^2???? ------------------------------------------------ Self-critique rating:
#$&* course Mth 277 3/21 1 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: z = x y + 1 = cos(3t) * cot(3 t) + 1, so dz/dt = (cos(3t)) ' cot(3t) + cos(3t) (cot(3t) ) ' = -3 sin(3t) cot(3t) - cos(3 t) sec^2(3 t), which could be simplified. Using the chain rule dz/dt = dz/dx dx/dt + dz/dy dy/dt = y * (-3 sin(3t) ) + x * (-sec^2(3 t)) = -3 sin(3 t) cot(3 t) + cos(3 t) * (-sec^2(3 t) ), which could also be simplified but is clearly equal to the previous expression. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ????Not sure if Im correct but wouldnt derivative of cot(3t) = -3csc^2(3t) not sec^2(3 t)??? I think tan(t) = -sec^2(t) but cot(3t) = -3csc^2(3t)??????
.............................................
Given Solution: z = x^2 + y^2 = (u cos(v))^2 + (u + v^2) ^ 2 = u^2 cos^2(v) + u^2 + 2 u v^2 + v^4. So z_u = 2 u cos^2(v) + 2 u + 2 v^2 and z_v = -2 u^2 cos(v) sin(v) + 4 u v + 4 v^3. Applying the chain rule: F_x = 2 x and F_y = 2 y. dx/du = cos(v), dx/dv = - u sin(v), dy/du = 1 and dy/dv = 2 v. Thus dz/du = dz/dx * dx/du + dz/dy * dy/du = 2 x * cos(v) * 2 v + 2 y * 1 = 2 u cos(v) * cos(v) + 2 (u + v^2) * 1. When simplified this agrees with our previous result z_u = 2 u cos^2(v) + 2 u + 2 v^2 . dz/dv works out in an analogous manner. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I messed up somewhere in my approach or logic Im not sure which one???? Self-critique rating: ********************************************* Question: `q003. Find w_r where w = e^(x - y + 3z^2) and x = r + t - s, y = 3r - 2t, z = sin(rst). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: w_r = (dw/dx)(dx/dr) + (dw/dy)(dy/dr) + (dw/dz)(dz/dr) (dw/dx) = d/dx(e^(x - y + 3z^2)) = f(g(h)) f(z) = e^(z), g(h) = x - y + 3z^2 f(z) = e^(z), g(h) = 1f(g(h)) = 1* e^(x - y + 3z^2) = e^(x - y + 3z^2) (dw/dx) = d/dx(e^(x - y + 3z^2)) = e^(x - y + 3z^2) (dx/dr) = d/dr(r + t - s) = 1 (dw/dy) = d/dy(e^(x - y + 3z^2)) = f(g(h)) f(z) = e^(z), g(h) = x - y + 3z^2 f(z) = e^(z), g(h) = -1f(g(h)) = -1* e^(x - y + 3z^2) = -e^(x - y + 3z^2) (dw/dy) = d/dx(e^(x - y + 3z^2)) = -e^(x - y + 3z^2) (dy/dr) = d/dr(3r - 2t) = 3 (dw/dz) = d/dz(e^(x - y + 3z^2)) = f(g(h)) f(z) = e^(z), g(h) = x - y + 3z^2 f(z) = e^(z), g(h) = 6zf(g(h)) = 6z* e^(x - y + 3z^2) = 6ze^(x - y + 3z^2) (dz/dr) = d/dr(sin(rst)) = f(g(h))f(z) = sin(z), g(h) = rst f(z) = cos(z), g(h) = st f(g(h)) = f(z)*g(h) = st*cos(rst) (dz/dr) = d/dr(sin(rst)) = st*cos(rst) Now to put it al together, w_r = (dw/dx)(dx/dr) + (dw/dy)(dy/dr) + (dw/dz)(dz/dr) = e^(x - y + 3z^2)*1 + e^(x - y + 3z^2)*-1 + 6ze^(x - y + 3z^2)*(st*cos(rst)) = e^(x - y + 3z^2) - e^(x - y + 3z^2) + 6ze^(x - y + 3z^2)*(st*cos(rst)) = 6ze^(x - y + 3z^2)*(st*cos(rst)), where z = sin(rst), x = r + t - s, and y = 3r - 2t 6(sin(rst))e^((r + t - s) - (3r - 2t) + 3 sin(rst)^2)*(st*cos(rst)) = 6st*sin(rst)cos(rst)e^(-2r + 3t - s + 3 sin(rst)^2) So our final answer is w_r = 6st*sin(rst)cos(rst)e^(-2r + 3t - s + 3 sin(rst)^2) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: w_r can be written dw/dr, and we have dw/dr = dw/dx dx/dr + dw/dy dy/dr + dw/dz dz/dr = e^(x - y + 3 z^2) * 1 - e^(x - y + 3 z^2) * 3 + 6 z e^(x - y + 3 z^2) * (r s) cos(r s t). Simplifying and substituting for x, y and z we get (-2 + 6 sin(rst) ) e^(-2 r + 3 t + 3 ( sin^2(rst)) ) &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ?????Im confused about how dw/dy dy/dr = - e^(x - y + 3 z^2) * 3, and isnt just e^(x - y + 3 z^2)*-1 ????? Apart from that my solution is almost the same as yours I believe. ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: Regarding R, R1, R2 and R3 as functions of t, we take the t derivative of both sides and get -1/R^2 dR/dt = -1/R1^2 d(R1)/dt -1/R2^2 d(R2)/dt -1/R3^2 d(R3)/dt so that dR/dt = (-1/R1^2 d(R1)/dt -1/R2^2 d(R2)/dt -1/R3^2 d(R3)/dt) * R^2 Substituting the given values for the three resistances and the three rates of change we get dR/dt = (-1 / (150 ohms)^2 * (-3 ohms/sec) - 1 / (300 ohms) * (+4 ohms/sec) - 1 / (450 ohms) * (-3 ohms/sec) ) * R^2 = 7 / (67500 ohm sec) * (900/11 ohms) ^2 = .69 ohms / sec, approx.. You can verify that for the given values of R1, R2 and R3 we get R = 900/11. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok, so first step take derivative of all values wrt t, getting dR/dt(1/R) = -1/R^2 dR1/dt( 1/(R1)) = -1/R1^2 dR2/dt(1/(R2)) = -1/R2^2 dR3/dt( 1/(R3)) = -1/R3^2 So we know that the change in R wrt t will be the combined changes in R1,R2 and R3 wrt t. Giving us the equation -1/R^2 dR/dt = -1/R1^2 d(R1)/dt -1/R2^2 d(R2)/dt -1/R3^2 d(R3)/dt Now to find roc in R wrt t we mult. thru by -R^2 and get dR/dt = [-1/R1^2 d(R1)/dt -1/R2^2 d(R2)/dt -1/R3^2 d(R3)/dt]-R^2 Now plugging in values for R1,R2 and R3 as well as the roc in R1,R2 and R3 which is given we get.. dR/dt = [-1/(150ohm)^2*(-3ohm/s)-1/(300ohm)^2*(4ohm/s) -1/(450)^2*(-3ohm/s]R^2 =approx. [.00013ohm/s - .00004ohm/s + .000015ohm/s]*-R^2 = approx. .000105ohm/s*-R^2 ?????I understand everything till this point but dont understand how you obtained a value for R^2???? ------------------------------------------------ Self-critique rating: