#$&* course Mth277 5/9 3 Question: Evaluate the surface integral Int[Int[2xy dS, S]] where S is the surface described by z = 10, and x^2/4 + y^2 <= 1.YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
.............................................
Given Solution: z = f(x, y) = 10, so f_x and f_y are both zero. The area 'multiplier' sqrt( 1 + f_x^2 + f_y^2) is therefore equal to 1 at all points. The region x^2 / 4 + y^2 <= 1 is an ellipse with semiaxes parallel to the x and y axes, centered at the origin, intercepting the axes at (2, 0), (-2, 0), (0, 1) and (0, -1). It can be described by -2 <= x <= 2, -sqrt(1 - x^2 / 4) <= y <= sqrt( 1 - x^2 / 4). The desired integral is therefore int ( int( 1 dy, -sqrt(1 - x^2 / 4), sqrt(1 - x^2 / 4)) dx, -2, 2) = int( 2 sqrt(1 - x^2 / 4) dx, -2, 2). This integral is easily evaluated (let x = 4 cos(theta), dx = - 4 sin(theta) dTheta, etc.). The result is 2 pi. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I understand everything except why we didn’t have to account for our fn which defined our surce area or the g(x,y,f(x,y)) fn. I thought that when given the form Int[Int[2xy dS, S]] we had to mult. our fn(which in this case was 2xy) by the “area multiplier”. It seems your integral was based simply on the “area mult” and the boundary curves. So do we not have to incorporate that fn if we know the boundary curve, that doesn’t make sense to me but not much does these days ????????
.............................................
Given Solution: The surface is z = f(x, y) = x y, so f_x = y and f_y = x. The area factor is therefore sqrt(1 + f_x^2 + f_y^2), so that dS = sqrt( 1 + y^2 + x^2) dA. The region is 0 <= x <= 2, 0 <= y <= sqrt( 4 - x^2). Our integral is thus int ( int ( x^2 + y^2 ) sqrt(1 + x^2 + y^2) dy, 0, sqrt(4 - x^2)) dx, 0, 2). However, this integral is fairly messy, involving trig substitutions and a lot of bookkeeping. Not particularly difficult, but it can get confusing. At some point in the process we would be likely to note that x^2 + y^2 occurs in both factors of the integral. This might inspire us to use polar coordinates, replacing x^2 + y^2 with r^2. Our region becomes 0 <= r <= 4, 0 <= theta <= pi / 2. Our integrand would become r^2 sqrt( 1 + r^2). That doesn't look too bad, but it gets even better when we use our polar coordinate area increment r dr dTheta. We end up with the integral int( int( r^2 * sqrt(1 + r^2) * r dr, 0, 2) dTheta, 0, pi/2). Our inner integral has integrand r^3 ( 1 + r^2). Substituting u = r^2 we get du = 2 r dr, so that r dr = du / 2. Writing r^3 ( 1 + r^2) dr as r^2 ( 1 + r^2) ( r dr ), our change of variables becomes obvious. Our integrand is u sqrt( 1 + u) du / 2. One more simple change of variable helps: let w = 1 + u so that u = w - 1. du = dw so our integrand is (w - 1) sqrt(w) dw / 2 = w^(3/2) - w^(1/2) = 2/5 w^(5/2) - 2/3 w^(3/2). Changing the variable back to u then to r, we get our antiderivative 1/5 (1 + r^2) ^ (5/2) - 1/3 (1 + r^2) ^ (3/2) At r = 0 this is 0, and at r = 2 it is 1/5 ( 5 )^(5/2) - 1/3 ( 5 ) ^ (3/2) Our integral for theta is then int(1/5 ( 17 )^(5/2) - 1/3 ( 17 ) ^ (3/2) dTheta, 0, pi/2) = pi/2 ( 1/5 ( 5 )^(5/2) - 1/3 ( 5 ) ^ (3/2)) We get approximately 11.7 &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Very same approach I had except I was thinking trig sub, but you approach was much simpler. Not that you need me to tell you that. Again I’m confused about why we took into account the “x^2+y^2” or the g(x,y,f(x,y)) fn this time but not previously?????
.............................................
Given Solution: Consider the face which intersects the vertical plane x = 1. On this face we have x = 1, 0 <= y <= 1, 0 <= z <= 1. The outward unit normal vector is i . F dot N = (1 i + 2 y j + z k) dot i = 1, so the surface integral is int(int(1 dy, 0, 1) dz, 0, 1) = 1. The face intersecting the vertical plane x = 0 can be described similarly, except that the outward unit normal is - i and F dot N = (0 i + 2 y j + z k) dot (- j ) = 0, so we have int(int(0 dy, 0, 1) dz, 0, 1) = 0. Similar analysis yields analogous results for the vertical faces intersecting the planes y = 0 and y = 1, yielding integrals 0 and 2, respectively, and for the horizontal faces intersecting the planes z = 0 and z = 1, on which we get integrals - and 1. Thus the total surface integral is 4. This can be interpreted as the flux of the field F through the cube. Note that we have div F = 4. Integrating this through the volume of the cube, which has volume 1, our result is just 4 * 1 = 4. Thus the volume integral of the divergence of F is equal to the flux of F through the surface. Note furthermore that the curl of F is zero, so that F is the gradient of a scalar potential function, and therefore a conservative function. We can easily find the scalar potential function 1/2 x^2 + y^2 + 1/2 z^2 &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I swear I didn’t look at your solution and it seems I was correct when I finally worked through it!
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: &&& YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: "