#$&*
course PHY 232 If your solution to stated problem does not match the given solution, you should self-critique per instructions athttp://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm..............................................
Given Solution: The average induced emf is the average rate of change of the magnetic flux with respect to clock time. The initial magnetic flux through this loop is flux = magnetic field * area = 1.10 T * (pi * .048 m)^2 = .00796 T m^2. Flux is designated by the Greek letter phi. The flux is reduced to 0 when the loop is removed from the field, so the change in flux has magnitude .0080 T m^2. The rate of change of flux is therefore `d phi / `dt = .0080 T m^2 / (.15 sec) = .053 T m^2 / sec = .053 volts. STUDENT COMMENT OK so its in Volts. I understand INSTRUCTOR RESPONSE You had the right number. You should also carry the units throughout the calculation. A Tesla is a N / (amp m) so the unit T m^2 / sec becomes N m / (amp sec) = J / (C/s * s) = J / C, or volts. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating:
********************************************* Question: `qquery gen problem 21.23 320-loop square coil 21 cm on a side, .65 T mag field. How fast to produce peak 120-v output? How many cycles per second are required to produce a 120-volt output, and how did you get your result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: I’m in university physics confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^.............................................
Given Solution: The average magnitude of the output is peak output/sqrt(2) . We find the average output as ave rate of flux change. The area of a single coil is (21 cm)^2 = (.21 m)^2 and the magnetic field is .65 Tesla; there are 320 coils. When the plane of the coil is perpendicular to the field we get the maximum flux of fluxMax = .65 T * (.21 m)^2 * 320 = 19.2 T m^2. The flux will decrease to zero in 1/4 cycle. Letting t_cycle stand for the time of a complete cycle we have ave magnitude of field = magnitude of change in flux / change in t = 9.17T m^2 / (1/4 t_cycle) = 36.7 T m^2 / t_cycle. If peak output is 120 volts the ave voltage is 120 V / sqrt(2) so we have 36.7 T m^2 / t_cycle = 120 V / sqrt(2). We easily solve for t_cycle to obtain t_cycle = 36.7 T m^2 / (120 V / sqrt(2) ) = .432 second.+ A purely symbolic solution uses maximum flux = n * B * A average voltage = V_peak / sqrt(2), where V_peak is the peak voltage giving us ave rate of change of flux = average voltage so that n B * A / (1/4 t_cycle) = V_peak / sqrt(2), which we solve for t_cycle to get t_cycle = 4 n B A * sqrt(2) / V_peak = 4 * 320 * .65 T * (.21 m)^2 * sqrt(2) / (120 V) = .432 second. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating:
********************************************* Question: `quniv query 29.54 (30.36 10th edition) univ upward current I in wire, increasing at rate di/dt. Loop of height L, vert sides at dist a and b from wire. When the current is I what is the magnitude of B at distance r from the wire and what is the magnetic flux through a strip at this position having width `dr? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: Part A) Where I = i B = micro^2 / 2pi * r and into the page Part B) We need the differential in flux. BdA = micro^2 / 2pi*r Ldr Part C) Flux is the integral of d(flux) from a to b So we can pull ouyt micro IL / 2pi and inside the integral of dr / r from a to be. The integral of that would have the logarithmic function. So we would have micro I L / 2 pi * ln(b/a) Part D) E = dflux / dt = micro L / 2pi * ln(b/a) di/dt Part E) E = micro (0.240m / 2pi) * ln(0.360 /0.120) ( 9.60 A/s) = 5.06 x 10^-7 V confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ confidence rating #$&*:: (Type in a number from 0 to 3, indicating your level of confidence in your solution. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3 means you are at least 90% confident of your solution, or that you are confident you got at least 90% of the solution 2 means that you are more that 50% confident of your solution, or that you are confident you got at least 50% of the solution 1 means that you think you probably got at least some of the solution correct but don't think you got the whole thing 0 means that you're pretty sure you didn't get anything right) Response: 3.............................................
Given Solution: ** The magnetic field due to the wire at distance r is 2 k ' I / r. The field is radial around the wire and so by the right-hand rule (thumb in direction of current, fingers point in direction of field) is downward into the page. The area of the strip is L * `dr. The magnetic flux thru the strip is therefore 2 k ' I / r * (L `dr). The total magnetic field over a series of such strips partitioning the area is thus sum(2 k ' I / r * L `dr, r from a to b). Taking the limit as `dr -> 0 we get integral (2 k ' I / r * L with respect to r, r from a to b). Our antiderivative is 2 k ' I ln | r | * L; the definite integral therefore comes out to flux = 2 k ' L ln | b / a | * I. If I is changing then we have rate of change of flux = 2 k ' L ln | b / a | * dI/dt. This is the induced emf through a single turn. You can easily substitute a = 12.0 cm = .12 m, b = 36.0 cm = .36 m, L = 24.0 cm = .24 m and di/dt = 9.60 A / s, and multiply by the number of turns. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): (If you believe your solution matches the given solution then just type in 'OK'. Otherwise explain in your own words how your solution differs from the given solution, and demonstrate what you did not originally understand but now understand about the problem and its solution.) OK ------------------------------------------------ Self-critique Rating: (If you believe your solution matches the given solution then just type in 'OK'.
Otherwise evaluate the quality of your self-critique by typing in a number between 0 and 3. • 3 indicates that you believe you have addressed all discrepancies between the given solution and your solution, in such a way as to demonstrate your complete understanding of the situation. • 2 indicates that you believe you addressed most of the discrepancies between the given solution and your solution but are unsure of some aspects of the situation; you would at this point consider including a question or a statement of what you're not sure you understand • 1 indicates that you believe you understand the overall idea of the solution but have not been able to address the specifics of the discrepancies between your solution and the given solution; in this case you would normally include a question or a statement of what you're not sure you understand • 0 indicates that you don't understand the given solution, and/or can't make a reasonable judgement about whether or not your solution is correct; in this case you would be expected to address the given solution phrase-by-phrase and state what you do and do not understand about each phrase) OK ********************************************* Question: A 320-loop square coil 21 cm on a side rotates about an axis perpendicular to a .65 T mag field. What frequency of oscillation will produce a peak 120-v output? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: The average magnitude of the output is peak output/sqrt(2) . We find the average output as ave rate of flux change. The area of a single coil is (21 cm)^2 = (.21 m)^2 and the magnetic field is .65 Tesla; there are 320 coils. When the plane of the coil is perpendicular to the field we get the maximum flux of fluxMax = .65 T * (.21 m)^2 * 320 = 19.2 T m^2. The flux will decrease to zero in 1/4 cycle. Letting t_cycle stand for the time of a complete cycle we have ave magnitude of field = magnitude of change in flux / change in t = 9.17T m^2 / (1/4 t_cycle) = 36.7 T m^2 / t_cycle. If peak output is 120 volts the ave voltage is 120 V / sqrt(2) so we have 36.7 T m^2 / t_cycle = 120 V / sqrt(2). We easily solve for t_cycle to obtain t_cycle = 36.7 T m^2 / (120 V / sqrt(2) ) = .432 second.+ A purely symbolic solution uses maximum flux = n * B * A average voltage = V_peak / sqrt(2), where V_peak is the peak voltage giving us ave rate of change of flux = average voltage so that n B * A / (1/4 t_cycle) = V_peak / sqrt(2), which we solve for t_cycle to get t_cycle = 4 n B A * sqrt(2) / V_peak = 4 * 320 * .65 T * (.21 m)^2 * sqrt(2) / (120 V) = .432 second. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ confidence rating #$&*: (Type in a number from 0 to 3, indicating your level of confidence in your solution. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3 means you are at least 90% confident of your solution, or that you are confident you got at least 90% of the solution 2 means that you are more that 50% confident of your solution, or that you are confident you got at least 50% of the solution 1 means that you think you probably got at least some of the solution correct but don't think you got the whole thing 0 means that you're pretty sure you didn't get anything right) Response: 3.............................................
Given Solution: I wouldn't advocate using a formula from the book to solve this problem. Common sense, starting from the premise that the voltage function is the derivative of the flux function, is much more efficient (way fewer formulas to remember and less chance of using the wrong one). The maximum flux is .65 T * (.21 m)^2/ loop * 320 loops = 9.173 T m^2. So the flux as a function of clock time could be modeled by • phi(t) = 9.173 T m^2 * sin(2 pi f t). The voltage induced by changing flux is the rate of change of flux with respect to clock time. So the voltage function is the t derivative of the flux: • V(t) = phi ' (t) = 9.173 T m^2 * 2 pi f cos(2 pi f t). Maximum voltage occurs when cos(2 pi f t) = 1. At this instant the voltage is • max voltage = 9.173 T m^2 * 2 pi f. Setting this equal to the peak voltage we get • 9.173 T m^2 * 2 pi f = 120 V so that • f = 120 V / (9.173 T m^2 * 2 pi) = 2.08 V / / (T m^2) = 2.08 T m^2 / s / (T m^2) = 2.08 s^-1. We can generalize this symbolically by replacing 9.173 T m^2 by phi_max, which represents the maximum flux. So a generator with maximum flux phi_max, rotating a frequency f has flux function • phi(t) = phi_max cos(2 pi f t) with t derivative • V(t) = phi ' (t) = phi_max cos(2 pi f t). Everything follows easily from this formulation, with no need to memorize the formulas that result. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): (If you believe your solution matches the given solution then just type in 'OK'. Otherwise explain in your own words how your solution differs from the given solution, and demonstrate what you did not originally understand but now understand about the problem and its solution.) OK ------------------------------------------------ Self-critique Rating: (If you believe your solution matches the given solution then just type in 'OK'.
Otherwise evaluate the quality of your self-critique by typing in a number between 0 and 3. • 3 indicates that you believe you have addressed all discrepancies between the given solution and your solution, in such a way as to demonstrate your complete understanding of the situation. • 2 indicates that you believe you addressed most of the discrepancies between the given solution and your solution but are unsure of some aspects of the situation; you would at this point consider including a question or a statement of what you're not sure you understand • 1 indicates that you believe you understand the overall idea of the solution but have not been able to address the specifics of the discrepancies between your solution and the given solution; in this case you would normally include a question or a statement of what you're not sure you understand • 0 indicates that you don't understand the given solution, and/or can't make a reasonable judgement about whether or not your solution is correct; in this case you would be expected to address the given solution phrase-by-phrase and state what you do and do not understand about each phrase) OK " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Otherwise evaluate the quality of your self-critique by typing in a number between 0 and 3. • 3 indicates that you believe you have addressed all discrepancies between the given solution and your solution, in such a way as to demonstrate your complete understanding of the situation. • 2 indicates that you believe you addressed most of the discrepancies between the given solution and your solution but are unsure of some aspects of the situation; you would at this point consider including a question or a statement of what you're not sure you understand • 1 indicates that you believe you understand the overall idea of the solution but have not been able to address the specifics of the discrepancies between your solution and the given solution; in this case you would normally include a question or a statement of what you're not sure you understand • 0 indicates that you don't understand the given solution, and/or can't make a reasonable judgement about whether or not your solution is correct; in this case you would be expected to address the given solution phrase-by-phrase and state what you do and do not understand about each phrase) OK " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&! Otherwise evaluate the quality of your self-critique by typing in a number between 0 and 3. • 3 indicates that you believe you have addressed all discrepancies between the given solution and your solution, in such a way as to demonstrate your complete understanding of the situation. • 2 indicates that you believe you addressed most of the discrepancies between the given solution and your solution but are unsure of some aspects of the situation; you would at this point consider including a question or a statement of what you're not sure you understand • 1 indicates that you believe you understand the overall idea of the solution but have not been able to address the specifics of the discrepancies between your solution and the given solution; in this case you would normally include a question or a statement of what you're not sure you understand • 0 indicates that you don't understand the given solution, and/or can't make a reasonable judgement about whether or not your solution is correct; in this case you would be expected to address the given solution phrase-by-phrase and state what you do and do not understand about each phrase) OK " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!#*&! `gr31#$&* course PHY 232 If your solution to stated problem does not match the given solution, you should self-critique per instructions athttp://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.
.............................................
Given Solution: The average induced emf is the average rate of change of the magnetic flux with respect to clock time. The initial magnetic flux through this loop is flux = magnetic field * area = 1.10 T * (pi * .048 m)^2 = .00796 T m^2. Flux is designated by the Greek letter phi. The flux is reduced to 0 when the loop is removed from the field, so the change in flux has magnitude .0080 T m^2. The rate of change of flux is therefore `d phi / `dt = .0080 T m^2 / (.15 sec) = .053 T m^2 / sec = .053 volts. STUDENT COMMENT OK so its in Volts. I understand INSTRUCTOR RESPONSE You had the right number. You should also carry the units throughout the calculation. A Tesla is a N / (amp m) so the unit T m^2 / sec becomes N m / (amp sec) = J / (C/s * s) = J / C, or volts. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qquery gen problem 21.23 320-loop square coil 21 cm on a side, .65 T mag field. How fast to produce peak 120-v output? How many cycles per second are required to produce a 120-volt output, and how did you get your result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: I’m in university physics confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The average magnitude of the output is peak output/sqrt(2) . We find the average output as ave rate of flux change. The area of a single coil is (21 cm)^2 = (.21 m)^2 and the magnetic field is .65 Tesla; there are 320 coils. When the plane of the coil is perpendicular to the field we get the maximum flux of fluxMax = .65 T * (.21 m)^2 * 320 = 19.2 T m^2. The flux will decrease to zero in 1/4 cycle. Letting t_cycle stand for the time of a complete cycle we have ave magnitude of field = magnitude of change in flux / change in t = 9.17T m^2 / (1/4 t_cycle) = 36.7 T m^2 / t_cycle. If peak output is 120 volts the ave voltage is 120 V / sqrt(2) so we have 36.7 T m^2 / t_cycle = 120 V / sqrt(2). We easily solve for t_cycle to obtain t_cycle = 36.7 T m^2 / (120 V / sqrt(2) ) = .432 second.+ A purely symbolic solution uses maximum flux = n * B * A average voltage = V_peak / sqrt(2), where V_peak is the peak voltage giving us ave rate of change of flux = average voltage so that n B * A / (1/4 t_cycle) = V_peak / sqrt(2), which we solve for t_cycle to get t_cycle = 4 n B A * sqrt(2) / V_peak = 4 * 320 * .65 T * (.21 m)^2 * sqrt(2) / (120 V) = .432 second. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `quniv query 29.54 (30.36 10th edition) univ upward current I in wire, increasing at rate di/dt. Loop of height L, vert sides at dist a and b from wire. When the current is I what is the magnitude of B at distance r from the wire and what is the magnetic flux through a strip at this position having width `dr? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: Part A) Where I = i B = micro^2 / 2pi * r and into the page Part B) We need the differential in flux. BdA = micro^2 / 2pi*r Ldr Part C) Flux is the integral of d(flux) from a to b So we can pull ouyt micro IL / 2pi and inside the integral of dr / r from a to be. The integral of that would have the logarithmic function. So we would have micro I L / 2 pi * ln(b/a) Part D) E = dflux / dt = micro L / 2pi * ln(b/a) di/dt Part E) E = micro (0.240m / 2pi) * ln(0.360 /0.120) ( 9.60 A/s) = 5.06 x 10^-7 V confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ confidence rating #$&*:: (Type in a number from 0 to 3, indicating your level of confidence in your solution. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3 means you are at least 90% confident of your solution, or that you are confident you got at least 90% of the solution 2 means that you are more that 50% confident of your solution, or that you are confident you got at least 50% of the solution 1 means that you think you probably got at least some of the solution correct but don't think you got the whole thing 0 means that you're pretty sure you didn't get anything right) Response: 3
.............................................
Given Solution: ** The magnetic field due to the wire at distance r is 2 k ' I / r. The field is radial around the wire and so by the right-hand rule (thumb in direction of current, fingers point in direction of field) is downward into the page. The area of the strip is L * `dr. The magnetic flux thru the strip is therefore 2 k ' I / r * (L `dr). The total magnetic field over a series of such strips partitioning the area is thus sum(2 k ' I / r * L `dr, r from a to b). Taking the limit as `dr -> 0 we get integral (2 k ' I / r * L with respect to r, r from a to b). Our antiderivative is 2 k ' I ln | r | * L; the definite integral therefore comes out to flux = 2 k ' L ln | b / a | * I. If I is changing then we have rate of change of flux = 2 k ' L ln | b / a | * dI/dt. This is the induced emf through a single turn. You can easily substitute a = 12.0 cm = .12 m, b = 36.0 cm = .36 m, L = 24.0 cm = .24 m and di/dt = 9.60 A / s, and multiply by the number of turns. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): (If you believe your solution matches the given solution then just type in 'OK'. Otherwise explain in your own words how your solution differs from the given solution, and demonstrate what you did not originally understand but now understand about the problem and its solution.) OK ------------------------------------------------ Self-critique Rating: (If you believe your solution matches the given solution then just type in 'OK'. Otherwise evaluate the quality of your self-critique by typing in a number between 0 and 3. • 3 indicates that you believe you have addressed all discrepancies between the given solution and your solution, in such a way as to demonstrate your complete understanding of the situation. • 2 indicates that you believe you addressed most of the discrepancies between the given solution and your solution but are unsure of some aspects of the situation; you would at this point consider including a question or a statement of what you're not sure you understand • 1 indicates that you believe you understand the overall idea of the solution but have not been able to address the specifics of the discrepancies between your solution and the given solution; in this case you would normally include a question or a statement of what you're not sure you understand • 0 indicates that you don't understand the given solution, and/or can't make a reasonable judgement about whether or not your solution is correct; in this case you would be expected to address the given solution phrase-by-phrase and state what you do and do not understand about each phrase) OK ********************************************* Question: A 320-loop square coil 21 cm on a side rotates about an axis perpendicular to a .65 T mag field. What frequency of oscillation will produce a peak 120-v output? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: The average magnitude of the output is peak output/sqrt(2) . We find the average output as ave rate of flux change. The area of a single coil is (21 cm)^2 = (.21 m)^2 and the magnetic field is .65 Tesla; there are 320 coils. When the plane of the coil is perpendicular to the field we get the maximum flux of fluxMax = .65 T * (.21 m)^2 * 320 = 19.2 T m^2. The flux will decrease to zero in 1/4 cycle. Letting t_cycle stand for the time of a complete cycle we have ave magnitude of field = magnitude of change in flux / change in t = 9.17T m^2 / (1/4 t_cycle) = 36.7 T m^2 / t_cycle. If peak output is 120 volts the ave voltage is 120 V / sqrt(2) so we have 36.7 T m^2 / t_cycle = 120 V / sqrt(2). We easily solve for t_cycle to obtain t_cycle = 36.7 T m^2 / (120 V / sqrt(2) ) = .432 second.+ A purely symbolic solution uses maximum flux = n * B * A average voltage = V_peak / sqrt(2), where V_peak is the peak voltage giving us ave rate of change of flux = average voltage so that n B * A / (1/4 t_cycle) = V_peak / sqrt(2), which we solve for t_cycle to get t_cycle = 4 n B A * sqrt(2) / V_peak = 4 * 320 * .65 T * (.21 m)^2 * sqrt(2) / (120 V) = .432 second. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ confidence rating #$&*: (Type in a number from 0 to 3, indicating your level of confidence in your solution. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3 means you are at least 90% confident of your solution, or that you are confident you got at least 90% of the solution 2 means that you are more that 50% confident of your solution, or that you are confident you got at least 50% of the solution 1 means that you think you probably got at least some of the solution correct but don't think you got the whole thing 0 means that you're pretty sure you didn't get anything right) Response: 3
.............................................
Given Solution: I wouldn't advocate using a formula from the book to solve this problem. Common sense, starting from the premise that the voltage function is the derivative of the flux function, is much more efficient (way fewer formulas to remember and less chance of using the wrong one). The maximum flux is .65 T * (.21 m)^2/ loop * 320 loops = 9.173 T m^2. So the flux as a function of clock time could be modeled by • phi(t) = 9.173 T m^2 * sin(2 pi f t). The voltage induced by changing flux is the rate of change of flux with respect to clock time. So the voltage function is the t derivative of the flux: • V(t) = phi ' (t) = 9.173 T m^2 * 2 pi f cos(2 pi f t). Maximum voltage occurs when cos(2 pi f t) = 1. At this instant the voltage is • max voltage = 9.173 T m^2 * 2 pi f. Setting this equal to the peak voltage we get • 9.173 T m^2 * 2 pi f = 120 V so that • f = 120 V / (9.173 T m^2 * 2 pi) = 2.08 V / / (T m^2) = 2.08 T m^2 / s / (T m^2) = 2.08 s^-1. We can generalize this symbolically by replacing 9.173 T m^2 by phi_max, which represents the maximum flux. So a generator with maximum flux phi_max, rotating a frequency f has flux function • phi(t) = phi_max cos(2 pi f t) with t derivative • V(t) = phi ' (t) = phi_max cos(2 pi f t). Everything follows easily from this formulation, with no need to memorize the formulas that result. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): (If you believe your solution matches the given solution then just type in 'OK'. Otherwise explain in your own words how your solution differs from the given solution, and demonstrate what you did not originally understand but now understand about the problem and its solution.) OK ------------------------------------------------ Self-critique Rating: (If you believe your solution matches the given solution then just type in 'OK'. Otherwise evaluate the quality of your self-critique by typing in a number between 0 and 3. • 3 indicates that you believe you have addressed all discrepancies between the given solution and your solution, in such a way as to demonstrate your complete understanding of the situation. • 2 indicates that you believe you addressed most of the discrepancies between the given solution and your solution but are unsure of some aspects of the situation; you would at this point consider including a question or a statement of what you're not sure you understand • 1 indicates that you believe you understand the overall idea of the solution but have not been able to address the specifics of the discrepancies between your solution and the given solution; in this case you would normally include a question or a statement of what you're not sure you understand • 0 indicates that you don't understand the given solution, and/or can't make a reasonable judgement about whether or not your solution is correct; in this case you would be expected to address the given solution phrase-by-phrase and state what you do and do not understand about each phrase) OK " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Otherwise evaluate the quality of your self-critique by typing in a number between 0 and 3. • 3 indicates that you believe you have addressed all discrepancies between the given solution and your solution, in such a way as to demonstrate your complete understanding of the situation. • 2 indicates that you believe you addressed most of the discrepancies between the given solution and your solution but are unsure of some aspects of the situation; you would at this point consider including a question or a statement of what you're not sure you understand • 1 indicates that you believe you understand the overall idea of the solution but have not been able to address the specifics of the discrepancies between your solution and the given solution; in this case you would normally include a question or a statement of what you're not sure you understand • 0 indicates that you don't understand the given solution, and/or can't make a reasonable judgement about whether or not your solution is correct; in this case you would be expected to address the given solution phrase-by-phrase and state what you do and do not understand about each phrase) OK " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&! Otherwise evaluate the quality of your self-critique by typing in a number between 0 and 3. • 3 indicates that you believe you have addressed all discrepancies between the given solution and your solution, in such a way as to demonstrate your complete understanding of the situation. • 2 indicates that you believe you addressed most of the discrepancies between the given solution and your solution but are unsure of some aspects of the situation; you would at this point consider including a question or a statement of what you're not sure you understand • 1 indicates that you believe you understand the overall idea of the solution but have not been able to address the specifics of the discrepancies between your solution and the given solution; in this case you would normally include a question or a statement of what you're not sure you understand • 0 indicates that you don't understand the given solution, and/or can't make a reasonable judgement about whether or not your solution is correct; in this case you would be expected to address the given solution phrase-by-phrase and state what you do and do not understand about each phrase) OK " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!#*&!