Assignment 9

#$&*

course Mth 163

3/4/13 around 4:30p.m.I realized that this assignment did not show up on the page of all my assignments and your responses, so I am not sure if you received it. I thought I would just re-submitted it just in case.

009. `query 9

*********************************************

Question: `qSymbolic calculation of slope, preliminary exercise

What was the function, between which two points were you to calculate the average slope and how did you get this slope?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Average slope of the function y = .1x^2 - 3 between x= -2 & x=7

To find this we must substitute each number into the given equation:

Therefore y = .1*-2^2 - 3. When we follow through with this we get that y = -2.6.

So our coordinates are (-2, -2.6).

We do the same calculations for x = 7 with the equation .1*7^2 - 3. When we do this we get y = 1.9.

So the coordinate is (7, 1.9)

To find the average slop we must find the rise & the run. The rise is y1 - y2. This would be 1.9 - -2.6 which gives us 4.5. The run is x2-x1 giving us 7 - -2 = 9.

For the slope we have (y2-y1) / (x2-x1) = 4.5 / 9 = 0.5.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** For the function y = .1 x^2 - 3 between x = -2 and x = 7 we get:

slope = (y2 - y1) / (x2 - x1).

For x1 = 2 and x2 = 7 we have y2 = .1 * 7^2 - 3 = 1.9 and y1 = .1 * 2^2 - 3 = -2.6, so

slope = (1.9 - (-2.6) ) / ( 7 - (-2) ) = 4.5 / 9 = 1/2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qproblem 2 symbolic expression for slope, fn depth(t).

What is the expression for the slope between the two specified t values?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If y = f(x) is any function like the notation above, we could say that

When t1 = 10, y1 = f(10), so the first point is (t1, y1) = (10,f(10)).

When t2 = 30, y2 = f( 30), so the first point is (t2, y2) = (30,f(30)).

The run is therefore t2 - t1 = 30 - 10 = 20

The rise is y2 -y1 = f(t2) - f(t1). Which would be (f (30) - f(10)) = f(20)

So the slope is (y2 - y1) / (t2 - t1) = (f(30) - f(10)) / (30 - 10) = (30 - 10) / 20

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The function is given a name: depth(t).

t values are 10 and 30.

So rise = depth(30) - depth(10) and run = 30 - 10 = 20.

Thus slope = [ depth(30) - depth(10) ] / 20 . **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qWhat is the rise between the two specified t values?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The rise is the change in depth. We are given 10 and 30.

The change in depth is final depth - initial depth, which gives us rise = 30-10.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The rise is the change in depth. The two depths are depth(10) and depth(30).

The change in depth is final depth - initial depth, which gives us the expression

depth(30)-depth(10) **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qWhat is the run between the two specified t values?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The run is 30 -10 = 20.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** run = 30 - 10 = 20 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qWhat therefore is the slope and what does it mean?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Therefore the slope is (y2 - y1) / (t2 - t1) = (f(30) - f(20)) / (30 - 10) = (30 - 10) / 20

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** rise = depth(30)-(depth(10) indicates change in depth.

run = 30 - 10 = 20 = change in clock time.

Slope = rise / run = (depth(30) - depth(10) ) / 20, which is the average rate at which depth changes with respect to clock time between t = 10 and t = 30. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `q problem 5 graph points corresponding to load1 and load2

What are the coordinates of the requested graph points?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If x = load1, then y = f(x) = f(load1), giving us the point (load1, f(load1)). (l1, y1) = (3,f(3)).

If x = load2, then y = f(x) = f(load2), giving us the point (load2, f(load2)). (l2, y2) = (10,f(10)).

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The horizontal axis is the 'load' asix, the vertical axis is the springLength axis.

The load axis coordinates are load1 and load2.

The corresponding spring lengths are springLength(load1) and springLength(load2).

The springLength axis coordinates are springLength(load1) and springLength(load2).

The graph points are thereofore (load1, springLength(load1) ) and (load2, springLength(load2) ). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qWhat is your expression for the average slope of the graph between load1 and load2?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The slope is then (f(load 2) - f(load 1)) / (load2 - load1).

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** rise = springLength(load2) - springLength(load1)

run = load2 - load1 so

slope = [ springLength(load2) - springLength(load1)] / (load2 - load1). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `q problem 6 symbolic expression for slope of depth function

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To get this expression we must first determine what the rise is. This would be y2-y1 which would be f(t1) - f(t1).

The run is x2-x1 giving us t2-t1 or (t1 - f(t1)).

The slope is then (f(t1) - f(t1)) / (t1-f(t1)).

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** the name of the function is depth(t).

We need the slope between t = t1 and t = t2.

The depths are depth(t1) and depth(t2).

Thus rise is depth(t2) - depth(t1) and run is t2 - t1.

Slope is [ depth(t2) - depth(t1) ] / (t2 - t1). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `q problem 8 average rate from formula f(t) = 40 (2^(-.3 t) ) + 25 intervals of partition (10,20,30,40)

What average rate do you get from the formula? Show your steps.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The ave rate = change in depth / change in t. So if you plug the values in you get:

(f(20)-f(10))/(20-10) = (25.625 - 30 )/(20 - 10) = -4.375 / 10 = -.4375

(f(30)-f(20))/(30-20) = (25.07813 - 25.625)/(30 - 20) = -.5469 / 10 = -.05469.

(f(40)-f(30))/(40-30) = (25.00977 - 25.07813)/(40 - 30) = -.0684 / 10 = -.00684.

confidence rating #$&*: ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** ave rate = change in depth / change in t. For the three intervals we get

(f(20)-f(10))/(20-10) = (25.625 - 30 )/(20 - 10) = -4.375 / 10 = -.4375

(f(30)-f(20))/(30-20) = (25.07813 - 25.625)/(30 - 20) = -.5469 / 10 = -.05469.

(f(40)-f(30))/(40-30) = (25.00977 - 25.07813)/(40 - 30) = -.0684 / 10 = -.00684. **

Add comments on any surprises or insights you experienced as a result of this assignment.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE:

Ummm I know the slope formula is (y2-y1)/(x2-x1), but I always just put the number into the expression in the order I see them, but that is ok because I keep the order and get the correct answer because the y2,y1,x2,x1 or all relative. I am correct in doing this?

INSTRUCTOR COMMENT:

In other words you use (y1 - y2) / (x1 - x2) instead of (y2 - y1) / (x2 - x1).

It's more conventional to regard, say, 10 as x1 and 20 as x2, so f(20) is y2 and f(10) is y1. If you start from the lower x number and change to the higher the difference is higher - lower, and this is the way we usually think about changes. According to this convention we calculate change in y as y2 - y1 and change in x as x2 - x1.

You are doing (y1 - y2) / (x1 - x2) and you get a negative change in x, a negative denominator, and if you are thinking about change from the first quantity to the second this is backwards.

However as you say both numerator and denominator follow the same order so you still get the right answer, since (y1-y2)/(x1-x2)= (y2-y1) / (x2-x1). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating:3

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Very good work. Let me know if you have questions. &#