Assignment 002 

course MTH 158

[ݦyrLSȓGassignment #002

Your work has been received. Please scroll through the document to see any inserted notes (inserted at the appropriate place in the document, in boldface) and a note at the end. The note at the end of the file will confirm that the file has been reviewed; be sure to read that note. If there is no note at the end, notify the instructor through the Submit Work form, and include the date of the posting to your access page.

002. `query 2

College Algebra

09-05-2007

......!!!!!!!!...................................

09:29:52

R.2.46 (was R.2.36) Evaluate for x = -2, and y = 3 the expression (2x - 3) / y and explan how you got your result.

......!!!!!!!!...................................

RESPONSE -->

By substituting x with -2 and y with 3, the equation is

(2*-2-3)/3

First, doing the parentheses, (-4-3); (-7)

-7/3 and then simplifying to -2 1/3.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

09:30:08

** Starting with (2x-3)/y we substitute x=-2 and y=3 to get

(2*(-2) - 3)/3 =

(-4-3)/3=

-7/3. **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

09:35:13

R.2. 55 (was R.2.45) Evaluate for x = 3 and y = -2: | |4x| - |5y| | and explan how you got your result.

......!!!!!!!!...................................

RESPONSE -->

By substituting x with 3 and y with -2 the equation is

l l4(3)l - l5(-2)l l

l l12l - l-10l l

l 12 - 10 l

l 2 l

absolute value of l2l is 2.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

09:35:23

** Starting with | | 4x |- | 5y | | we substitute x=3 and y=-2 to get

| | 4*3 | - | 5*-2 | | =

| | 12 | - | -10 | | =

| 12-10 | =

| 2 | =

2. **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

09:49:11

R.2.64 (was R.2.54) Explain what values, if any, must not be present in the domain of the expression (-9x^2 - x + 1) / (x^3 + x)

......!!!!!!!!...................................

RESPONSE -->

After plugging in several numbers for x (3,2,1,0,-1,-2) the conclusion is that {xlx is not 0} being that if x=o the equation would be 0.

confidence assessment: 2

.................................................

......!!!!!!!!...................................

09:49:22

** The denominator of this expression cannot be zero, since division by zero is undefined.

Since x^3 + x factors into (x^2 + 1) ( x ) we see that x^3 + x = 0 only if x^2 + 1 = 0 or x = 0.

Since x^2 cannot be negative x^2 + 1 cannot be 0, so x = 0 is indeed the only value for which x^3 + x = 0. **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

09:51:17

R.2.73 (was R.4.6). What is (-4)^-2 and how did you use the laws of exponents to get your result?

......!!!!!!!!...................................

RESPONSE -->

since the exponent is negative, the equation would be 1/(-4)^2, being 1/16. (-4*-4)

confidence assessment: 3

.................................................

......!!!!!!!!...................................

09:51:30

**Since a^-b = 1 / (a^b), we have

(-4)^-2 = 1 / (-4)^2 = 1 / 16. **

......!!!!!!!!...................................

RESPONSE -->

yes

self critique assessment: 3

.................................................

......!!!!!!!!...................................

09:54:19

Extra Problem. What is (3^-2 * 5^3) / (3^2 * 5) and how did you use the laws of exponents to get your result?

......!!!!!!!!...................................

RESPONSE -->

using the law of exponents (9*125)/(9*5)

1125/45, when simplified: 25

confidence assessment: 3

.................................................

......!!!!!!!!...................................

09:54:47

** (3^(-2)*5^3)/(3^2*5). Grouping factors with like bases we have

3^(-2)/3^2 * 5^3 / 5. Using the fact that a^b / a^c = a^(b-c) we get

3^(-2 -2) * 5^(3-1), which gives us

3^-4 * 5^2. Using a^(-b) = 1 / a^b we get

(1/3^4) * 5^2. Simplifying we have

(1/81) * 25 = 25/81. **

......!!!!!!!!...................................

RESPONSE -->

I didn't see the negative sign on the exponent.

self critique assessment: 0

.................................................

......!!!!!!!!...................................

09:55:29

R.2.94. Express [ 5 x^-2 / (6 y^-2) ] ^ -3 with only positive exponents and explain how you used the laws of exponents to get your result.

......!!!!!!!!...................................

RESPONSE -->

confidence assessment:

.................................................

......!!!!!!!!...................................

09:57:32

R.2.94. Express [ 5 x^-2 / (6 y^-2) ] ^ -3 with only positive exponents and explain how you used the laws of exponents to get your result.

......!!!!!!!!...................................

RESPONSE -->

First, you get all positive exponents:

1/[5x^2/6y^2]^3

Then you simplify exponents:

1/[5x^6/6y^6]

confidence assessment: 2

.................................................

......!!!!!!!!...................................

09:57:43

09-05-2007 09:57:43

[ 5 x^-2 / (6 y^-2) ] ^ -3 = (5 x^-2)^-3 / (6 y^-2)^-3, since (a/b)^c = a^c / b^c. This simplifies to

5^-3 (x^-2)^-3 / [ 6^-3 (y^-2)^-3 ] since (ab)^c = a^c b^c. Then since (a^b)^c = a^(bc) we have

5^-3 x^6 / [ 6^-3 y^6 ] . We rearrange this to get the result

6^3 x^6 / (5^3 y^6), since a^-b = 1 / a^b.

......!!!!!!!!...................................

NOTES ------->

.......................................................!!!!!!!!...................................

10:00:50

Extra Problem. Express (-8 x^3) ^ -2 with only positive exponents and explain how you used the laws of exponents to get your result.

......!!!!!!!!...................................

RESPONSE -->

first combine exponents,

-8x^3*-2; -8x^-6

then make positive exponents,

1/8x^6

confidence assessment: 3

.................................................

......!!!!!!!!...................................

10:01:22

09-05-2007 10:01:22

** ERRONEOUS STUDENT SOLUTION: (-8x^3)^-2

-1/(-8^2 * x^3+2)

1/64x^5

INSTRUCTOR COMMENT:1/64x^5 means 1 / 64 * x^5 = x^5 / 64. This is not what you meant but it is the only correct interpretation of what you wrote.

Also it's not x^3 * x^2, which would be x^5, but (x^3)^2.

There are several ways to get the solution. Two ways are shown below. They make more sense if you write them out in standard notation.

ONE CORRECT SOLUTION: (-8x^3)^-2 =

(-8)^-2*(x^3)^-2 =

1 / (-8)^2 * 1 / (x^3)^2 =

1/64 * 1/x^6 =

1 / (64 x^5).

Alternatively

(-8 x^3)^-2 =

1 / [ (-8 x^3)^2] =

1 / [ (-8)^2 (x^3)^2 ] =

1 / ( 64 x^6 ). **

......!!!!!!!!...................................

NOTES ------->

.......................................................!!!!!!!!...................................

10:08:20

R.2.90 (was R.4.36). Express (x^-2 y) / (x y^2) with only positive exponents and explain how you used the laws of exponents to get your result.

......!!!!!!!!...................................

RESPONSE -->

the first step is to combine x and y's together:

(x^-2/x) * (y/y^2)

then combine them again

x^-2 * y^2

find positive exponents

(1/x^2) * y^2

combine again

y^2/x^2

confidence assessment: 3

.................................................

......!!!!!!!!...................................

10:08:30

09-05-2007 10:08:30

** (1/x^2 * y) / (x * y^2)

= (1/x^2 * y) * 1 / (x * y^2)

= y * 1 / ( x^2 * x * y^2)

= y / (x^3 y^2)

= 1 / (x^3 y).

Alternatively, or as a check, you could use exponents on term as follows:

(x^-2y)/(xy^2)

= x^-2 * y * x^-1 * y^-2

= x^(-2 - 1) * y^(1 - 2)

= x^-3 y^-1

= 1 / (x^3 y).**

......!!!!!!!!...................................

NOTES ------->

.......................................................!!!!!!!!...................................

10:13:17

Extra Problem. . Express 4 x^-2 (y z)^-1 / [ (-5)^2 x^4 y^2 z^-5 ] with only positive exponents and explain how you used the laws of exponents to get your result.

......!!!!!!!!...................................

RESPONSE -->

I'm not sure

confidence assessment: 0

.................................................

......!!!!!!!!...................................

10:13:25

09-05-2007 10:13:25

** Starting with

4x^-2(yz)^-1/ [ (-5)^2 x^4 y^2 z^-5] Squaring the -5 and using the fact that (yz)^-1 = y^1 * z^-1:

4x^-2 * y^-1 * z^-1/ [25 * x^4 * y^2 * z^-5} Grouping the numbers, and the x, the y and the z expression:

(4/25) * (x^-2/x^4) * (y^-1/y^2) * (z^-1/z^-5) Simplifying by the laws of exponents:

(4/25) * x^(-2-4) * y^(-1-2) * z^(-1+5) Simplifying further:

(4/25) * x^-6 * y^-3 * z^4 Writing with positive exponents:

4z^4/ (25x^6 * y^3 ) **

......!!!!!!!!...................................

NOTES ------->

.......................................................!!!!!!!!...................................

10:14:42

R.2.122 (was R.4.72). Express 0.00421 in scientific notation.

......!!!!!!!!...................................

RESPONSE -->

4.21 x 10^-3

confidence assessment: 3

.................................................

......!!!!!!!!...................................

10:15:38

** 0.00421 in scientific notation is 4.21*10^-3. This is expressed on many calculators as 4.21 E-4. **

......!!!!!!!!...................................

RESPONSE -->

I used the x key instead of the *.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

10:16:52

R.2.128 (was R.4.78). Express 9.7 * 10^3 in decimal notation.

......!!!!!!!!...................................

RESPONSE -->

9,700

confidence assessment: 3

.................................................

......!!!!!!!!...................................

10:17:10

** 9.7*10^3 in decimal notation is 9.7 * 1000 = 9700 **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

10:28:34

R.2.150 (was R.2.78) If an unhealthy temperature is one for which | T - 98.6 | > 1.5, then how do you show that T = 97 and T = 100 are unhealthy?

......!!!!!!!!...................................

RESPONSE -->

l97-98.6l>1.5

l-1.6l >1.5

l1.6l >1.5

l100-98.6l.1.5

l 1.4l<1.5

confidence assessment: 3

.................................................

......!!!!!!!!...................................

10:28:48

09-05-2007 10:28:48

** You can show that T=97 is unhealthy by substituting 97 for T to get | -1.6| > 1.5, equivalent to the true statement 1.6>1.5.

But you can't show that T=100 is unhealthy, when you sustitute for T then it becomes | 100 - 98.6 | > 1.5, or

| 1.4 | > 1.5, giving us

1.4>1.5, which is an untrue statement. **

......!!!!!!!!...................................

NOTES ------->

................................................."

&#

This looks very good. Let me know if you have any questions. &#