course MTH 158 ܦ’`èÓÈó[à¹ZˆÙ©¦`’ïÙ±ïþСîz¡¦~C›assignment #014
......!!!!!!!!...................................
16:57:13 1.6.12 (was 1.6.6). Explain how you found the real solutions of the equation | 1 - 2 z | + 6 = 0.
......!!!!!!!!...................................
RESPONSE --> 1-2z+6=9 or 1-2z+6=-9 -2z=2 -2z=-16 z=-1 z=8 {-1,8} confidence assessment: 3
.................................................
......!!!!!!!!...................................
16:57:23 10-09-2007 16:57:23 ** Starting with | 1-2z| +6 = 9 we add -6 to both sides to get | 1 - 2z| = 3. We then use the fact that | a | = b means that a = b or a = -b: 1-2z=3 or 1-2z= -3 Solving both of these equations: -2z = 2 or -2z = -4 we get z= -1 or z = 2 We express our solution set as {-2/3,2} **
......!!!!!!!!...................................
NOTES ------->
.......................................................!!!!!!!!...................................
17:03:49 1.6.30 (was 1.6.24). Explain how you found the real solutions of the equation | x^2 +3x - 2 | = 2
......!!!!!!!!...................................
RESPONSE --> x^2+3x-2=2 or x^2+3x-2=-2 x^2+3x-4=0 x^2+3x+0=0 x^2+4x-1x-4=0 x(x+3)=0 x(x+4)-1(x+4) x=0 x=-3 x=1 x=-4 {1,-4,0,-3} confidence assessment: 3
.................................................
......!!!!!!!!...................................
17:04:01 ** My note here might be incorrect. If the equation is | x^2 +3x -2 | = 2 then we have x^2 + 3x - 2 = 2 or x^2 + 3x - 2 = -2. In the first case we get x^2 + 3x - 4 = 0, which factors into (x-1)(x+4) = 0 with solutions x = 1 and x = -4. In the second case we have x^2 + 3x = 0, which factors into x(x+3) = 0, with solutions x = 0 and x = -3. **
......!!!!!!!!...................................
RESPONSE --> ok self critique assessment: 3
.................................................
......!!!!!!!!...................................
17:05:35 1.6.36 (was 1.6.30). Explain how you found the real solutions of the inequality | x + 4 | + 3 < 5.
......!!!!!!!!...................................
RESPONSE --> -5
.................................................
......!!!!!!!!...................................
17:05:48 10-09-2007 17:05:48 STUDENT SOLUTION: | x+4| +3 < 5 | x+4 | < 2 -2 < x+4 < 2 -6 < x < -2
......!!!!!!!!...................................
NOTES ------->
.......................................................!!!!!!!!...................................
17:09:49 1.6.48 (was 1.6.42). Explain how you found the real solutions of the inequality | -x - 2 | >= 1.
......!!!!!!!!...................................
RESPONSE --> -1<=-x-2>=1 -1<=-x-2 -x-2>=1 1<=-x -x>=3 -1>=x x<=-3 {x/x<=-3>=-1} in the interval, of ( ,-3) and (-1, ) confidence assessment: 2
.................................................
......!!!!!!!!...................................
17:09:59 10-09-2007 17:09:59 **Correct solution: | -x -2 | >= 1 Since | a | > b means a > b or a < -b (note the word 'or') we have -x-2 >= 1 or -x -2 <= -1. These inequalities are easily solved to get -x >= 3 or -x <= 1 or x <= -3 or x >= -1. So our solution is {-infinity, -3} U {-1, infinity}. **
......!!!!!!!!...................................
NOTES ------->
................................................."