course Phy 121 Qڂ{Srassignment #000
......!!!!!!!!...................................
16:30:34 If an object travels 40 centimeters down an incline in 5 seconds then what is its average velocity on the incline? Explain how your answer is connected to your experience.
......!!!!!!!!...................................
RESPONSE --> ok confidence assessment: 3
.................................................
......!!!!!!!!...................................
16:32:28 If the same object requires 3 second to reach the halfway point, what is its average velocity on the first half of the incline and what is its average velocity on the second half?
......!!!!!!!!...................................
RESPONSE --> .16 for both halves confidence assessment: 0
.................................................
......!!!!!!!!...................................
16:35:44 Using the same type of setup you used for the first object-down-an-incline lab, if the computer timer indicates that on five trials the times of an object down an incline are 2.42 sec, 2.56 sec, 2.38 sec, 2.47 sec and 2.31 sec, then to what extent do you think the discrepancies could be explained by each of thefollowing: {}{}a. The lack of precision of the TIMER program{}{}b. The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse){}{}c. Actual differences in the time required for the object to travel the same distance.{}{}d. Differences in positioningthe object prior to release.{}{}e. Human uncertainty in observing exactly when the object reached the end of the incline.
......!!!!!!!!...................................
RESPONSE --> it might not be correct, the time it actually hits the end could be slightly off from when we hit the mouse for it to stop, they couldve started off slower on some runs, if you place it in different places then the timing is going to be off, personally determining the point at which it reached the end could be different, causing differences in time. confidence assessment: 2
.................................................
......!!!!!!!!...................................
16:39:03 How much uncertainty do you think each of the following would actually contribute to the uncertainty in timing a number of trials for the object-down-an-incline lab? {}{}a. The lack of precision of the TIMER program{}{}b. The uncertain precision of human triggering (uncertainty associated bLine$(lineCount) =with an actual human finger on a computer mouse){}{}c. Actual differences in the time required for the object to travel the same distance.{}{}d. Differences in positioning the object prior to release.{}{}e. Human uncertainty in observing exactly when the object reached the end of the incline.
......!!!!!!!!...................................
RESPONSE --> a. maybe .1 b. 1-2 sec c. 1-2 sec d. 1 mm e. .5 sec confidence assessment: 2
.................................................
......!!!!!!!!...................................
16:41:11 What, if anything, could you do about the uncertainty due to each of the following? Address each specifically. {}{}a. The lack of precision of the TIMER program{}{}b. The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse){}{}c. Actualdifferences in the time required for the object to travel the same distance.{}{}d. Differences in positioning the object prior to release.{}{}e. Human uncertainty in observing exactly when the object reached the end of the incline.
......!!!!!!!!...................................
RESPONSE --> a. not much you could do b. try to pay more attention as to when exactly it reaches the end c. use a more precise timer d. mark each time where you place the object e. not much you could do confidence assessment: 2
.................................................
......!!!!!!!!...................................
16:42:15 According to the results of your introductory pendulum experiment, do you think doubling the length of the pendulum will result in half the frequency (frequency can be thought of as the number of cycles per minute), more than half or less than half?
......!!!!!!!!...................................
RESPONSE --> a little less than half confidence assessment: 3
.................................................
......!!!!!!!!...................................
16:42:19 According to the results of your introductory pendulum experiment, do you think doubling the length of the pendulum will result in half the frequency (frequency can be thought of as the number of cycles per minute), more than half or less than half?
......!!!!!!!!...................................
RESPONSE --> confidence assessment:
.................................................
......!!!!!!!!...................................
16:45:54 Note that for a graph of y vs. x, a point on the x axis has y coordinate zero and a point on the y axis has x coordinate zero. In your own words explain why this is so.
......!!!!!!!!...................................
RESPONSE --> because they are perpendicular confidence assessment: 0
.................................................
......!!!!!!!!...................................
16:47:51 On a graph of frequency vs. pendulum length (where frequency is on the vertical axis and length on the horizontal), what would it mean for the graph to intersect the vertical axis (i.e., what would it mean, in terms of the pendulum and its behavior, if the line or curve representing frequency vs. length goes through the vertical axis)? What would this tell you about the length and frequency of the pendulum?
......!!!!!!!!...................................
RESPONSE --> that the length is getting shorter confidence assessment: 1
.................................................
......!!!!!!!!...................................
16:48:44 On a graph of frequency vs. pendulum length, what would it mean for the graph to intersect the horizontal axis (i.e., what would it mean, in terms of the pendulum and its behavior, if the line or curve representing frequency vs. length goes through the horizontal axis)? What would this tell you about the length and frequency of the pendulum?
......!!!!!!!!...................................
RESPONSE --> that they are negative confidence assessment: 0
.................................................
......!!!!!!!!...................................
16:49:15 If a ball rolls down between two points with an average velocity of 6 cm / sec, and if it takes 5 sec between the points, then how far apart are the points?
......!!!!!!!!...................................
RESPONSE --> 30cm confidence assessment: 3
.................................................
......!!!!!!!!...................................
16:49:31 On the average the ball moves 6 centimeters every second, so in 5 seconds it will move 30 cm. {}{}The formal calculation goes like this: {}{}We know that vAve = `ds / `dt, where vAve is ave velocity, `ds is displacement and `dt is the time interval. {}It follows by algebraic rearrangement that `ds = vAve * `dt.{}We are told that vAve = 6 cm / sec and `dt = 5 sec. It therefore follows that{}{}`ds = 6 cm / sec * 5 sec = 30 (cm / sec) * sec = 30 cm.{}{}The details of the algebraic rearrangement are asfollows:{}{}vAve = `ds / `dt. We multiply both sides of the equation by `dt:{}vAve * `dt = `ds / `dt * `dt. We simplify to obtain{}vAve * `dt = `ds, which we then write as{}`ds = vAve *`dt.{}{}Be sure to address anything you do not fully understand in your self-critique.
......!!!!!!!!...................................
RESPONSE --> ok self critique assessment: 3
.................................................
......!!!!!!!!...................................
16:52:54 You were asked to read the text and some of the problems at the end of the section. Tell me about something in the text you understood up to a point but didn't understand fully. Explain what you did understand, and ask the best question you can about what you didn't understand.
......!!!!!!!!...................................
RESPONSE --> i understand the SI, significant figures, and scientific notation pretty well. i have a little trouble with the order-of-magnitude estimate confidence assessment: 3
.................................................
......!!!!!!!!...................................
16:54:02 Tell me about something in the problems you understand up to a point but don't fully understand. Explain what you did understand, and ask the best question you can about what you didn't understand.
......!!!!!!!!...................................
RESPONSE --> i understand the scientific notation and significant figures pretty well. i had a little trouble getting used to converting units confidence assessment: 3
.................................................