#$&* course Mth 152 6/9 12:06 001. Counting
.............................................
Given Solution: There are 2 'words' that can be formed starting with the first letter, a. They are abc and acb. There are 2 'words' that can be formed starting with the second letter, b. They are bac and bca. There are 2 'words' that can be formed starting with the third letter, c. They are cab and cba. Note that this listing is systematic in that it is alphabetical: abc, acb, bac, bca, cab, cba. When listing things it is usually a good idea to be as systematic as possible, in order to avoid duplications and omissions. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q002. List all possible 3-letter 'words' that can be formed from the set of letters { a, b, c } if we allow repetition of letters. Possible 'words' include 'acb' and 'bac' as before; now 'aba' is permitted, as is 'ccc'. Also specify how many words you listed, and how you could have figured out the result without listing all the possibilities. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: aaa aba aab aac aca abc abb acc acb. These are the first solutions for A. Using this knowledge you can assume that there are 27 different combinations because if A has 9 different ones than B and C have to have the same amount. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Listing alphabetically: The first possibility is aaa. The next two possibilities start with aa. They are aab and aac. There are 3 possibilities that start with ab: aba, abb and abc. Then there are 3 more starting with ac: aca, acb and acc. These are the only possible 3-letter 'words' from the set that with a. Thus there are a total of 9 such 'words' starting with a. There are also 9 'words' starting with b: again listing in alphabetical order we have.baa, bab, bac; bba, bbb, bbc; bca, bcb and bcc There are finally 9 'words' starting with c: caa, cab, cac; cba, cbb, cbc; cca, ccb, ccc. We see that there are 9 + 9 + 9 = 27 possible 3-letter 'words'. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q003. If we form a 3-letter 'word' from the set {a, b, c}, not allowing repetitions, then: How many choices do we have for the first letter chosen? How many choices do we then have for the second letter?2 How many choices do we therefore have for the 2-letter 'word' formed by the first two letters chosen? 6 How many choices are then left for the third letter? 1 How many choices does this make for the 3-letter 'word'? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Three choices for the first letter because of a,b and c being the only letters given. For the second letter only 2 can be chosen without repetition. Choices wise you only have 6 words that can be formed because of ab,ba,ca,ac,cb,bc. This just leaves 1 letter left for the third letter. In all it leaves you 6 choices for your 3 letter words. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: There are 3 choices for the first letter. The choices are a, b and c. Recall that repetition is not permitted. So having chosen the first letter, whichever letter is chosen, there are only 2 possible choices left when we choose the second. The question arises whether there are now 2 + 3 = 5 or 3 * 2 = 6 possibilities for the first two letters chosen. The correct answer is 3 * 2 = 6. This is because for each of the 3 possible choices for the first letter, there are 2 possible choices for the second. [ This result illustrates the Fundamental Counting Principal: If we make a number of distinct choices in a sequence, the total number of possibilities is the product of the numbers of possibilities for each individual choice. ] Returning to the original Self-critique (if necessary): By the time we get to the third letter, we have only one letter left, so there is only one possible choice for our third letter. Thus the first two letters completely determine the third, and there are still only six possibilites. The Fundamental Counting Principal confirms this: the total number of possibilities is the product 3 * 2 * 1 = 6 of the numbers of possibilities for each of the sequential choices. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q004. Check your answer to the last problem by listing the possibilities for the first two letters. Does your answer to that question match your list? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ab, ac, ba, bc, ca and cb matches my list. " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q004. Check your answer to the last problem by listing the possibilities for the first two letters. Does your answer to that question match your list? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ab, ac, ba, bc, ca and cb matches my list. " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!