Areas

course Mth 151

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

qa areas etc

001. Areas

*********************************************

Question: `q001. There are 11 questions and 7 summary questions in this assignment.

What is the area of a rectangle whose dimensions are 4 m by 3 meters.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Area of a rectangle is the length times the width. So, the area of a rectangle whose sides are 4m by 3m is going to be 12m 4 * 3 =12m

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aA 4 m by 3 m rectangle can be divided into 3 rows of 4 squares, each 1 meter on a side. This makes 3 * 4 = 12 such squares. Each 1 meter square has an area of 1 square meter, or 1 m^2. The total area of the rectangle is therefore 12 square meters, or 12 m^2.

The formula for the area of a rectangle is A = L * W, where L is the length and W the width of the rectangle. Applying this formula to the present problem we obtain area A = L * W = 4 m * 3 m = (4 * 3) ( m * m ) = 12 m^2.

Note the use of the unit m, standing for meters, in the entire calculation. Note that m * m = m^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

3

*********************************************

Question: `q002. What is the area of a right triangle whose legs are 4.0 meters and 3.0 meters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To find the area of a triangle use base times height and then find half of that, or divide by 2. If a triangle has a base of 4.0m and a height of 3.0m , then 4.0*3.0=12m, then divide by 2 to get 6 square meters.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aA right triangle can be joined along its hypotenuse with another identical right triangle to form a rectangle. In this case the rectangle would have dimensions 4.0 meters by 3.0 meters, and would be divided by any diagonal into two identical right triangles with legs of 4.0 meters and 3.0 meters.

The rectangle will have area A = L * W = 4.0 m * 3.0 m = 12 m^2, as explained in the preceding problem. Each of the two right triangles, since they are identical, will therefore have half this area, or 1/2 * 12 m^2 = 6.0 m^2.

The formula for the area of a right triangle with base b and altitude h is A = 1/2 * b * h.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

3

*********************************************

Question: `q003. What is the area of a parallelogram whose base is 5.0 meters and whose altitude is 2.0 meters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To find the area of a parallelogram, simply use A=base times height. If a parallelogram has a base of 5.0m and an altitude of 2.0 m then 5.0 * 2.0= 10.0 meters squared.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aA parallelogram is easily rearranged into a rectangle by 'cutting off' the protruding end, turning that portion upside down and joining it to the other end. Hopefully you are familiar with this construction. In any case the resulting rectangle has sides equal to the base and the altitude so its area is A = b * h.

The present rectangle has area A = 5.0 m * 2.0 m = 10 m^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Ok ,

#### why do they use the word “altitude” for height in this question? To trick us?

'altitude' is the correct mathematical term. 'height' is often used interchangeably to mean 'altitude', including in my materials, but in fact 'height' is not a mathematically defined term.

------------------------------------------------

Self-critique rating #$&*

3

*********************************************

Question: `q004. What is the area of a triangle whose base is 5.0 cm and whose altitude is 2.0 cm?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Area of a triangle is half of the base times the height. If a triangle has a base of 5.0 and an altitude is 2.0 then 5.0 * 2.0 = 10.0 then divide by 2 and you get 10.0 / 2 = 5.0cm

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aIt is possible to join any triangle with an identical copy of itself to construct a parallelogram whose base and altitude are equal to the base and altitude of the triangle. The area of the parallelogram is A = b * h, so the area of each of the two identical triangles formed by 'cutting' the parallelogram about the approriate diagonal is A = 1/2 * b * h. The area of the present triangle is therefore A = 1/2 * 5.0 cm * 2.0 cm = 1/2 * 10 cm^2 = 5.0 cm^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

3

*********************************************

Question: `q005. What is the area of a trapezoid with a width of 4.0 km and average altitude of 5.0 km?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Area = Base times height. 4.0km * 5.0 km = 20km^2

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

1

.............................................

Given Solution:

`aAny trapezoid can be reconstructed to form a rectangle whose width is equal to that of the trapezoid and whose altitude is equal to the average of the two altitudes of the trapezoid. The area of the rectangle, and therefore the trapezoid, is therefore A = base * average altitude. In the present case this area is A = 4.0 km * 5.0 km = 20 km^2.

STUDENT SOLUTION ILLUSTRATING NEED TO USE UNITS IN ALL STEPS

A=Base time average altitude therefore………A=4 *5= 20 km ^2

INSTRUCTOR COMMENT

A = (4 km) * (5 km) = 20 km^2.

Use the units at every step. km * km = km^2, and this is why the answer comes out in km^2.

Try to show the units and how they work out in every step of the solution.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

To be honest , I had forgotten the formula for a trapezoid, but ended up with a correct answer.

------------------------------------------------

Self-critique rating #$&*2

*********************************************

Question: `q006. What is the area of a trapezoid whose width is 4 cm in whose altitudes are 3.0 cm and 8.0 cm?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To get the area of a trapezoid , first, add the altitudes 3.0 + 8.0=11.0 then divide by 2.

11.0 / 2 = 5.5 . Then multiply the width (4 cm) and 5.5.

4 * 5.5 = 22 cm^2

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`aThe area is equal to the product of the width and the average altitude. Average altitude is (3 cm + 8 cm) / 2 = 5.5 cm so the area of the trapezoid is A = 4 cm * 5.5 cm = 22 cm^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

3

*********************************************

Question: `q007. What is the area of a circle whose radius is 3.00 cm?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The Area of a circle is A=pi times r^2. If the radius of a circle is 3.00 cm, then take pi *3.00^2. Pi times 9.00 = 28.26 cm^2

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aThe area of a circle is A = pi * r^2, where r is the radius. Thus

A = pi * (3 cm)^2 = 9 pi cm^2.

Note that the units are cm^2, since the cm unit is part r, which is squared.

The expression 9 pi cm^2 is exact. Any decimal equivalent is an approximation. Using the 3-significant-figure approximation pi = 3.14 we find that the approximate area is A = 9 pi cm^2 = 9 * 3.14 cm^2 = 28.26 cm^2, which we round to 28.3 cm^2 to match the number of significant figures in the given radius.

Be careful not to confuse the formula A = pi r^2, which gives area in square units, with the formula C = 2 pi r for the circumference. The latter gives a result which is in units of radius, rather than square units. Area is measured in square units; if you get an answer which is not in square units this tips you off to the fact that you've made an error somewhere.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

3

*********************************************

Question: `q008. What is the circumference of a circle whose radius is exactly 3 cm?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To get the circumference of a circle , C = 2*pi*r. So if the radius of a circle is 3 cm, then

2*pi*3cm = C. 2*pi*3 cm = 18.84 cm^2

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`aThe circumference of this circle is

C = 2 pi r = 2 pi * 3 cm = 6 pi cm.

This is the exact area. An approximation to 3 significant figures is 6 * 3.14 cm = 18.84 cm.

Note that circumference is measured in the same units as radius, in this case cm, and not in cm^2. If your calculation gives you cm^2 then you know you've done something wrong.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I understand why it wouldn’t be cm^2 now.

------------------------------------------------

Self-critique rating #$&*

2

*********************************************

Question: `q009. What is the area of a circle whose diameter is exactly 12 meters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Area = pi*r^2 . So, one would take have of the diameter to get the radius, which is 12/2=6.

Then A= pi * 6^2. Which is A = pi * 36. So the area would be pi * 36 or 113.04m^2

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aThe area of a circle is A = pi r^2, where r is the radius. The radius of this circle is half the 12 m diameter, or 6 m. So the area is

A = pi ( 6 m )^2 = 36 pi m^2.

This result can be approximated to any desired accuracy by using a sufficient number of significant figures in our approximation of pi. For example using the 5-significant-figure approximation pi = 3.1416 we obtain A = 36 m^2 * 3.1416 = 113.09 m^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I understand why I was off. I used pi as 3.14 , not 3.1416

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q010. What is the area of a circle whose circumference is 14 `pi meters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Area = pi*r^2

C= 2*pi*r Before we can find the area, we must have the radius. If we have the circumference then we can solve for r and that will give us the radius.

R = C / 2*pi R= 14 / 2*pi which is r = 7 *pi

Then plug 7pi into the area = pi*r^2 , A= pi*7^2

Or = 49pi m^2

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`aWe know that A = pi r^2. We can find the area if we know the radius r. We therefore attempt to use the given information to find r.

We know that circumference and radius are related by C = 2 pi r. Solving for r we obtain r = C / (2 pi). In this case we find that

r = 14 pi m / (2 pi) = (14/2) * (pi/pi) m = 7 * 1 m = 7 m.

We use this to find the area

A = pi * (7 m)^2 = 49 pi m^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

That was honestly my best guess at that problem. I just wasn’t exactly sure on how to go about starting that problem. But I do believe I understand

------------------------------------------------

Self-critique rating #$&*

2

*********************************************

Question: `q011. What is the radius of circle whose area is 78 square meters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Area = pi*r^2 to find the radius , you must solve for r

Area/pi = r^2

78 / 3.14 = r^2

24.84 =r^2 then take square root to find just r

4.98m =r

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`aKnowing that A = pi r^2 we solve for r. We first divide both sides by pi to obtain A / pi = r^2. We then reverse the sides and take the square root of both sides, obtaining r = sqrt( A / pi ).

Note that strictly speaking the solution to r^2 = A / pi is r = +-sqrt( A / pi ), meaning + sqrt( A / pi) or - sqrt(A / pi). However knowing that r and A are both positive quantities, we can reject the negative solution.

Now we substitute A = 78 m^2 to obtain

r = sqrt( 78 m^2 / pi) = sqrt(78 / pi) m.{}

Approximating this quantity to 2 significant figures we obtain r = 5.0 m.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Ok , I understand

------------------------------------------------

Self-critique rating #$&*

2

*********************************************

Question: `q012. Summary Question 1: How do we visualize the area of a rectangle?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The area of a rectangle is the length times the width

A= L*W

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aWe visualize the rectangle being covered by rows of 1-unit squares. We multiply the number of squares in a row by the number of rows. So the area is A = L * W.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q013. Summary Question 2: How do we visualize the area of a right triangle?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The Area of a triangle is half of the product of base times height or A=(b*h) /2

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aWe visualize two identical right triangles being joined along their common hypotenuse to form a rectangle whose length is equal to the base of the triangle and whose width is equal to the altitude of the triangle. The area of the rectangle is b * h, so the area of each triangle is 1/2 * b * h.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

3

*********************************************

Question: `q014. Summary Question 3: How do we calculate the area of a parallelogram?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The Area of a parallelogram is the base * height.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe area of a parallelogram is equal to the product of its base and its altitude. The altitude is measured perpendicular to the base.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

3

*********************************************

Question: `q015. Summary Question 4: How do we calculate the area of a trapezoid?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To find the area of a trapezoid, add the bases together, divide their sum by 2, then times that by the heighth of the trapezoid.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aWe think of the trapezoid being oriented so that its two parallel sides are vertical, and we multiply the average altitude by the width.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

2

*********************************************

Question: `q016. Summary Question 5: How do we calculate the area of a circle?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To find the area of a circle , take pi*r^2 , or Area = pi*r^2

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aWe use the formula A = pi r^2, where r is the radius of the circle.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

3

*********************************************

Question: `q017. Summary Question 6: How do we calculate the circumference of a circle? How can we easily avoid confusing this formula with that for the area of the circle?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To get the Circumference of a circle, take 2*pi*r , or C=2*pi*r

Circumference and Area are two different things.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aWe use the formula C = 2 pi r. The formula for the area involves r^2, which will give us squared units of the radius. Circumference is not measured in squared units.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Ok , I understand.

------------------------------------------------

Self-critique rating #$&*

3

*********************************************

Question: `q018. Explain how you have organized your knowledge of the principles illustrated by the exercises in this assignment.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique rating #$&*

3

&#Good work. See my notes and let me know if you have questions. &#