Velocity

#$&*

course PHY 201

002. Velocity*********************************************

Question: `q001. Note that there are 17 questions in this assignment.

If an object moves 12 meters in 4 seconds, then what is its average velocity? Explain how you obtained your result in terms of commonsense ideas.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

12m/4sec = 3m/s

Common sense states that we use the formula for average velocity.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Moving 12 meters in 4 seconds, we move an average of 3 meters every second.

We can imagine dividing up the 12 meters into four equal parts, one for each second. Each part will span 3 meters, corresponding to the distance moved in 1 second, on the average.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

@&

Good, but you don't need a formula to understand this very basic calculation. You should (and I'm sure do) understand this perfectly well at the level of common sense.

Formulas come into play when we want to formulate our common sense, and/or when we need to go beyond what we most thoroughly understand.

*@

*********************************************

Question: `q002. How is the preceding problem related to the concept of a rate?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Rate is the change in one variable based upon the amount of change in another i.e. the change in meters in relation to the change in time.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

A rate is obtained by dividing the change in a quantity by the change in another quantity on which is dependent. In this case we divided the change in position by the time during which that change occurred.

More specifically

The rate of change of A with respect to B is defined to be the quantity (change in A) / (change in B).

An object which moves 12 meters in 3 seconds changes its position by 12 meter during a change in clock time of 3 seconds. So the question implies

Change in position = 12 meters

Change in clock time = 3 seconds

When we divide the 12 meters by the 3 seconds we are therefore dividing (change in position) by (change in clock time). In terms of the definition of rate of change:

the change in position is the change in A, so position is the A quantity.

the change in clock time is the change in B, so clock time is the B quantity.

So

(12 meters) / (3 seconds) is

(change in position) / (change in clock time) which is the same as

average rate of change of position with respect to clock time.

Thus

average velocity is average rate of change of position with respect to clock time.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q003. We are still referring to the situation of the preceding questions:

Is object position dependent on time or is time dependent on object position?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

object position related to time. Meters PER SECOND

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Object position is dependent on time--the clock runs whether the object is moving or not so time is independent of position. Clock time is pretty much independent of anything else (this might not be so at the most fundamental level, but for the moment, unless you have good reason to do otherwise, this should be your convention).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q004. We are still referring to the situation of the preceding questions, which concern average velocity:

So the rate here is the average rate at which position is changing with respect to clock time. Explain what concepts, if any, you missed in your explanations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I get it.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Be sure you have reviewed all the definitions and concepts associated with velocity. If there’s anything you don’t understand, be sure to address it in your self-critique.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q005. If an object is displaced -6 meters in three seconds, then what is the average speed of the object? What is its average velocity? Explain how you obtained your result in terms of commonsense images and ideas.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-6m/3sec = -2m/sec velocity

6m displacement/3sec = 2m/sec speed

Velocity is a vector quantity, speed is simply the average displacement / time unit

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Speed is the average rate at which distance changes with respect to clock time. Distance cannot be negative and the clock runs forward. Therefore speed cannot be negative.

Velocity is the average rate at which position changes with respect to clock time, and since position changes can be positive or negative, so can velocity.

In general distance has no direction, while velocity does have direction.

Putting it loosely, speed is just how fast something is moving; velocity is how fast and in what direction.

In this case, the average velocity is

vAve = `ds / `dt = -6 m / (3 s) = -2 m/s.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q006. If `ds stands for the change in the position of an object and `dt for the time interval during which its position changes, then what expression stands for the average velocity vAve of the object during this time interval?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

DS/DT = Velocity

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Average velocity is rate of change of position with respect to clock time.

Change in position is `ds and change in clock time is `dt, so average velocity is expressed in symbols as

vAve = `ds / `dt.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q007. How do you write the expressions `ds and `dt on your paper?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

delta s and delta t, delta is written as a triangle.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

You use the Greek capital Delta when writing on paper or when communicating outside the context of this course; this is the symbol that looks like a triangle. See Introductory Problem Set 1.

`d is used for typewritten communication because the symbol for Delta is not interpreted correctly by some Internet forms and text editors. You should get in the habit of thinking and writing the Delta symbol when you see `d.

You may use either `d or Delta when submitting work and answering questions.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q008. If an object changes position at an average rate of 5 meters/second for 10 seconds, then how far does it move?

How is this problem related to the concept of a rate?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

5 meters/sec x 10 seconds = 50 meters

5m/sec is the rate at which the object is changing position

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

In this problem you are given the rate at which position changes with respect to time, and you are given the time interval during which to calculate the change in position.

The definition of rate of change states that the rate of change of A with respect to B is (change in A) / (change in B), which we abbreviate as `dA / `dB. `dA stands for the change in the A quantity and `dB for the change in the B quantity.

For the present problem we are given the rate at which position changes with respect to clock time. The definition of rate of change is stated in terms of the rate of change of A with respect to B.

So we identify the position as the A quantity, clock time as the B quantity.

The basic relationship

ave rate = `dA / `dB

can be algebraically rearranged in either of two ways:

`dA = ave rate * `dB or

`dB = `dA / (ave rate)

Using position for A and clock time for B the above relationships are

ave rate of change of position with respect to clock time = change in position / change in clock time

change in position = ave rate * change in clock time

change in clock time = change in position / ave rate.

In the present situation we are given the average rate of change of position with respect to clock time, which is 5 meters / second, and the change in clock time, which is 10 seconds.

Thus we find

change in position = ave rate * change in clock time = 5 cm/sec * 10 sec = 50 cm.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q009. If vAve stands for the rate at which the position of the object changes with respect to clock time (also called velocity) and `dt for the time interval during which the change in position is to be calculated, then how to we write the expression for the change `ds in the position?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

ds = velcoity x dt

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To find the change in a quantity we multiply the rate by the time interval during which the change occurs.

The velocity is the rate, so we obtain the change in position by multiplying the velocity by the time interval:

`ds = vAve * `dt.

The units of this calculation pretty much tell us what to do:

We know what it means to multiply pay rate by time interval (dollar / hr * hours of work) or automobile velocity by the time interval (miles / hour * hour).

When we multiply vAve, for example in in units of cm / sec or meters / sec, by `dt in seconds, we get displacement in cm or meters. Similar reasoning applies if we use different measures of distance.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q010. Explain how the quantities average velocity vAve, time interval `dt and displacement `ds are related by the definition of a rate, and how this relationship can be used to solve the current problem.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

velocity = ds/dt

velocity = change in position/change in time

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

vAve is the average rate at which position changes. The change in position is the displacement `ds, the change in clock time is `dt, so vAve = `ds / `dt.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q011. The basic rate relationship vAve = `ds / `dt expresses the definition of average velocity vAve as the rate at which position s changes with respect to clock time t. What algebraic steps do we use to solve this equation for `ds, and what is our result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

multiply both sides by dt

vAve x dt=ds

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To solve vAve = `ds / `dt for `ds, we multiply both sides by `dt. The steps:

vAve = `ds / `dt. Multiply both sides by `dt:

vAve * `dt = `ds / `dt * `dt Since `dt / `dt = 1

vAve * `dt = `ds . Switching sides we have

`ds = vAve * `dt.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q012. How is the preceding result related to our intuition about the meanings of the terms average velocity, displacement and clock time?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

displacement is found my multiplying the speed at which something is traveling by how long the object is traveling.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

For most of us our most direct intuition about velocity probably comes from watching an automobile speedometer.

We know that if we multiply our average velocity in mph by the duration `dt of the time interval during which we travel, we get the distance traveled in miles. From this we easily extend the idea.

Whenever we multiply our average velocity by the duration of the time interval, we expect to obtain the displacement, or change in position, during that time interval.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q013. What algebraic steps do we use to solve the equation vAve = `ds / `dt for `dt, and what is our result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

multiply each side by dt

dt x vAve = ds

Divide each side by vAve

dt = ds/vAve

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To solve vAve = `ds / `dt for `dt, we must get `dt out of the denominator. Thus we first multiply both sides by the denominator `dt. Then we can see where we are and takes the appropriate next that. The steps:

vAve = `ds / `dt. Multiply both sides by `dt:

vAve * `dt = `ds / `dt * `dt Since `dt / `dt = 1

vAve * `dt = `ds. We can now divide both sides by vAve to get `dt = `ds / vAve.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q014. How is this result related to our intuition about the meanings of the terms average velocity, displacement and clock time?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

We find the time needed to travel a certain distance by dividing the distance by the average velocity

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If we want to know how long it will take to make a trip at a certain speed, we know to divide the distance in miles by the speed in mph.

If we divide the number of miles we need to travel by the number of miles we travel in hour, we get the number of hours required. This is equivalent to the calculation `dt = `ds / vAve.

We extend this to the general concept of dividing the displacement by the velocity to get the duration of the time interval.

When dealing with displacement, velocity and time interval, we can always check our thinking by making the analogy with a simple example involving miles, hours and miles/hour.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

If you understand the assignment and were able to solve the previously given problems from your worksheets, you should be able to complete most of the following problems quickly and easily. If you experience difficulty with some of these problems, you will be given notes and we will work to resolve difficulties.

*********************************************

Question: `q015. A ball falls 20 meters from rest in 2 seconds. What is the average velocity of its fall?

Your answer should begin with the definition of average velocity, in terms of the definition of an average rate of change.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

vAve = ds/dt

vAve = 20m/2sec = 10m/sec

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q016. A car moves at an average speed of 20 m/s for 6 seconds. How far does it move?

Your answer should begin with the definition of average velocity, in terms of the definition of an average rate of change.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

vAve = ds/dt

ds=vAve x dt

20m/s x 6 sec = 120 meters

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `q017. An object's position changes by amount `ds during a time interval `dt. What is the expression for its average velocity during this interval?

Your answer should begin with the definition of average velocity, in terms of the definition of an average rate of change.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

vAve = ds/dt

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

------------------------------------------------

Self-critique rating:

@&

Very good. It appears that you understand these concepts very well, and I don't expect the mathematics to hinder you at all as you work thorough this course (which is a good thing since you have only half the full summer term to complete it).

Do check my one inserted note.

*@