course mth 272 ?m??????????????assignment #020
......!!!!!!!!...................................
17:00:41 Query problem 6.5.12 (was 6.5.10) trapezoidal and Simpson's rules, n=4, integral 0 to 2 of x `sqrt(x2+1)
......!!!!!!!!...................................
RESPONSE --> Using Trap b - a / n = 2-0 / 4 = 1/2 x0 = 0, x1 = .5, x2 = 1, x3 = 1.5, x4 = 2 b-a /2n =1/4 so, 1/4 ( 0 'sqrt(0^2 +1) + 2( .5 'sqrt(.5^2 +1) + 2(1 'sqrt(1^2 +1) + 2(1.5 'sqrt 1.5^2 +1) + (2 'sqrt(2^2 +1) 1/4 ( 0+1.118+2.828+5.408+4.472) =3.457 Using Simpson's width again = 1/2 x0 = 0, x1 = .5, x2 = 1, x3 = 1.5, x4 = 2 b-a / 3n =1/6 1/6( 0 'sqrt(0^2 +1) + 4( .5 'sqrt(.5^2 +1) + 2(1 'sqrt(1^2 +1) + 4(1.5 'sqrt 1.5^2 +1) + (2 'sqrt(2^2 +1) = 1/6 (0+2.449+2.828+10.817+4.472 = 3.427 both answers = 3.4 confidence assessment: 3
.................................................
......!!!!!!!!...................................
17:01:05 What are your results for the trapezoidal rule and for Simpson's rule, and what is your value for the exact integral?
......!!!!!!!!...................................
RESPONSE --> already answered approx 3.4 confidence assessment: 3
.................................................
......!!!!!!!!...................................
17:12:17 How many times closer is Simpson's rule than the trapezoidal rule?
......!!!!!!!!...................................
RESPONSE --> ok oops I forgot to find the exact value of the integral here it is = x (x^2 +1)^2 (2x) =1/2 integral (x^2 + 1)^3 / 3 = (x^2 +1)^3 / 6 fundamental theorem 20.833 - .167 = 20.666 that cant be right, but i'm not sure where I went wrong confidence assessment: 1
.................................................
......!!!!!!!!...................................
17:30:34 Query problem 6.5.21 (was 6.5.19) present value of 6000 + 200 `sqrt(t) at 7% for 4 years by Simpson's rule
......!!!!!!!!...................................
RESPONSE --> width n = 8 using simpson's rule 4-0 / 3(8) = 4 / 24 = 1/6 x0 = 0, x1 = 1, x2 = 2, x3 =3, x4 =4 1/6 ( 6000 + 'sqrt(t) ....use simpson formula ) = 11525.22 use present value formula = (11525.22 / -.07)e^-.07t at integral from 0 to 4 =124436.77 - (-164646) = $289092.77 confidence assessment: 2
.................................................
......!!!!!!!!...................................
17:30:46 What is your result for the present value?
......!!!!!!!!...................................
RESPONSE --> already answered confidence assessment: 2
.................................................
......!!!!!!!!...................................
17:30:57 What expression did you integrate between what limits to obtain your result?
......!!!!!!!!...................................
RESPONSE --> already answered confidence assessment:
.................................................
......!!!!!!!!...................................
17:49:00 Query distance traveled by pursuer along path y = 1/3 (x^(3/2) - 3 x^(1/2) + 2) over [0, 1].
......!!!!!!!!...................................
RESPONSE --> f'(x) = 1/3 (3/2 x ^1/2 - 1.5x^-1/2) f''(x) = 1/3 ( 3/4 x^-1/2 - 3/4x^-1.5)
.................................................
......!!!!!!!!...................................
17:49:23 What is the distance traveled?
......!!!!!!!!...................................
RESPONSE --> not sure, look at previous confidence assessment:
.................................................
......!!!!!!!!...................................
17:49:36 What expression did you integrate between what limits to obtain your result?
......!!!!!!!!...................................
RESPONSE --> already answered confidence assessment:
.................................................
......!!!!!!!!...................................
17:49:48 How did you perform your integration?
......!!!!!!!!...................................
RESPONSE --> already answered confidence assessment:
.................................................