Assignment4

course Mth 151

px fTͦ לw assignment #004

Your work has been received. Please scroll through the document to see any inserted notes (inserted at the appropriate place in the document, in boldface) and a note at the end. The note at the end of the file will confirm that the file has been reviewed; be sure to read that note. If there is no note at the end, notify the instructor through the Submit Work form, and include the date of the posting to your access page.

004. Subsets; One-to-One Correspondences.

Liberal Arts Mathematics I

06-07-2007

......!!!!!!!!...................................

18:09:45

`qNote that there are 4 questions in this assignment.

`q001. From the collection of letters a, b, c, d, e, how many smaller collections having at least one element may be formed?

......!!!!!!!!...................................

RESPONSE -->

There are five elements in this set, so the number of possible subsets can be found by

2 ^ 5 - 1 = 31

confidence assessment: 2

.................................................

......!!!!!!!!...................................

18:12:19

We will list the original collection by placing its elements between braces: { a, b, c, d, e }.

The collection {a, b, c, d} is a smaller collection obtained by eliminating e from the original collection. Similarly we can eliminate d or c or b or a to get the 4-element collections {a, b, c, e}, {a, b, d, e}, { a, c, d, e} and {b, c, d, e}.

Alternatively we could simply include either a or b or c or d or e in a 1-element collection, obtaining {a}, {b}, {c}, {d} and {e}. It should be clear that these are the only ways to form collections of 1 or 4 elements.

To form a collection of 2 elements we could include a and one other element, obtaining { a, b}, { a, c }, { a, d } and { a, e }.

Or we could include b and one other element (excluding a, since we already have the collection { a, b } which is identical to the collection { b, a } since it has exactly the same elements). We obtain { b, c }, { b, d } and { b, e }. {}Or we could include c and one other element (other than a or b, since these have already been listed) to obtain { c, d } and { c, e }.

Finally we could include d and the only other element left, e, to get { d, e}.

This gives us a complete listing of the 10 sets we can form with 2 of the original elements.

This leaves us the 3-element sets, which can be formed by excluding the 2-element sets. Working in reverse order, we can exclude { d, e } to get { a, b, c }, or { c, e } to get { a, b, d }, etc.. The remaining sets we get in this fashion are { a, b, e}, { a, c, d }, { a, c, e}, { a, d, e}, { b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}. We thus have 10 three-element sets.

The total number of smaller sets containing at least one element is therefore 5 + 5 + 10 + 10 = 30.

......!!!!!!!!...................................

RESPONSE -->

Rather than listing each possible combination, I used the formula from p.60 of the book, which says that ""The number of proper subsets of a set with n elements is 2 ^ n -1,"" which is how I got 31.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

18:13:55

`q002. A one-to-one correspondence between two sets is a rule that associates each element of the each with exactly one element of the other. A natural one-to-one correspondence between the sets { a, b, c } and { 1, 2, 3 } would be to associate a with 1, b with 2, c with 3. This correspondence might be represented as [ a <--> 1, b <--> 2, c <--> 3 ].

This isn't the only possible one-to-one correspondence between these sets. Another might be [ a <--> 2, b <--> 1, c <--> 3 ]. In each case, every element of each set is associated with exactly one element of the other.

Another correspondence between the sets might be [ a <--> 3, b<-->2, c<-->3 ]. This correspondence is not one-to-one. In what way does it fail to be a one-to-one correspondence (remember that a one-to-one correspondence is one in which every element of each set is associated with exactly one element of the other).

......!!!!!!!!...................................

RESPONSE -->

It fails to be a one-to-one correspondence because one of the elements, 3, is used twice and the element 1 is not used at all. For it to be a one-to-one correspondence each element of each set should be used only once.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

18:14:09

[ a <--> 3, b<-->2, c<-->3 ] fails to be a one-to-one correspondence for two reasons. In the first place, 3 is associated with a and with c, and every element of each set is to be associated with exactly one element of the other. 3 is associated with two elements of the other set.

It also fails because the element 1 of the second set is not associated with anything in the first set.

......!!!!!!!!...................................

RESPONSE -->

OK

self critique assessment: 3

.................................................

......!!!!!!!!...................................

18:16:07

`q003. There are four possible one-to-one correspondences between the sets {a, b, c} and {1, 2, 3} which were not described in the preceding exercise. One of them would be [ a <--> 3, b <--> 2, c <--> 1 ]. What are the other three possible one-to-one correspondences?

......!!!!!!!!...................................

RESPONSE -->

a <-> 2, b <-> 3, c <-> 1

a <-> 3, b <-> 1, c <2>

a <-> 1, b <-> 3, c <2>

confidence assessment: 2

.................................................

......!!!!!!!!...................................

18:16:33

If we designate the correspondence [ a <--> 1, b <--> 2, c <--> 3 ] as the '123' correspondence, [a <--> 2, b <--> 1, c <--> 3 ] as the '213' correspondence and [a <--> 3, b <--> 2, c <--> 1 ] as the '321' correspondence, in each case listing the numbers associated with a, b, c in that order, we see that the remaining three correspondences could be designated 132, 231 and 312. These correspondences could of course be written out as [ a <--> 1, b <--> 3, c <--> 2 ], [ a <--> 2, b <--> 3, c <--> 1 ] and [ a <--> 3, b <--> 1, c <--> 2 ].

Note that 123, 132, 213, 231, 312, 321 represent the six ways of rearranging the digits 1, 2, 3 into a 3-digit number, listed in increasing order.

......!!!!!!!!...................................

RESPONSE -->

OK

self critique assessment: 3

.................................................

......!!!!!!!!...................................

18:17:34

`q004. Explain why it is not possible to put the sets { a, b, c} and {1, 2, 3, 4} into a one-to-one correspondence.

......!!!!!!!!...................................

RESPONSE -->

It is not possible to put these two sets into a one-to-one correspondence because they do not contain the same number of elements. One set contains 3 elements and one set contains 4.

confidence assessment: 3

.................................................

......!!!!!!!!...................................

18:17:45

One set has 3 elements and the other has 4 elements. A 1-to-1 correspondence has to match each element of each set with exactly one element of the other. It would not be possible to find four different elements of the first set to match with the four elements of the second.

......!!!!!!!!...................................

RESPONSE -->

OK

self critique assessment: 3

.................................................

"

Good. Let me know if you have questions.