Assign 9 R9

course Mth 158

assignment #008

008. `query 8

College Algebra

02-06-2007

......!!!!!!!!...................................

13:38:37

R.8.64. What is the simplified form of sqrt( 4 ( x+4)^2 ) and how did you get this result?

......!!!!!!!!...................................

RESPONSE -->

confidence assessment: 0

.................................................

......!!!!!!!!...................................

13:43:47

** (24)^(1/3) =

(8 * 3)^(1/3) =

8^(1/3) * 3^(1/3) =

2 * 3^(1/3) **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 2.

.................................................

......!!!!!!!!...................................

13:50:50

** (x^2y)^(1/3) * (125x^3)^(1/3)/ ( 8 x^3y^4)^(1/3)

(x^(2/3)y^(1/3)* (5x)/[ 8^(1/3) * xy(y^(1/3)]

(x^(2/3)(5x) / ( 2 xy)

5( x^(5/3)) / ( 2 xy)

5x(x^(2/3)) / ( 2 xy)

5 ( x^(2/3) ) / (2 y) **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 2

.................................................

......!!!!!!!!...................................

13:51:45

Extra Question:. What is the simplified form of 2 sqrt(12) - 3 sqrt(27) and how did you get this result?

......!!!!!!!!...................................

RESPONSE -->

ok

confidence assessment: 0

.................................................

......!!!!!!!!...................................

13:53:17

** 2* sqrt(12) - 3*sqrt(27) can be written as

2* sqrt (4*3) - 3 * sqrt (9*3) by factoring out the maximum possible perfect square in each square root. This simplifies to

2* sqrt (4) sqrt(3) - 3 * sqrt (9) sqrt(3) =

2*2 sqrt 3 - 3*3 * sqrt 3 =

}

4*sqrt3 - 9 * sqrt3 =

-5sqrt3. **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 2

.................................................

......!!!!!!!!...................................

13:54:05

R.8.78. What is the simplified form of (2 sqrt(6) + 3) ( 3 sqrt(6)) and how did you get this result?

......!!!!!!!!...................................

RESPONSE -->

ok

confidence assessment: 0

.................................................

......!!!!!!!!...................................

13:56:28

** (2*sqrt(6) +3)(3*sqrt(6)) expands by the Distributive Law to give

(2*sqrt(6) * 3sqrt(6) + 3*3sqrt(6)), which we rewrite as

(2*3)(sqrt6*sqrt6) + 9 sqrt(6) =

(6*6) + 9sqrt(6) =

36 +9sqrt(6). **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 2

.................................................

FȂKT{mw

assignment #008

008. `query 8

College Algebra

02-06-2007

......!!!!!!!!...................................

14:05:48

R.8.64. What is the simplified form of sqrt( 4 ( x+4)^2 ) and how did you get this result?

......!!!!!!!!...................................

RESPONSE -->

sqrt(4(x+4)^2)=

=sqrt(4) * sqrt(x+4)^2

=2 * |x+4|

confidence assessment: 2

.................................................

......!!!!!!!!...................................

14:06:09

** sqrt(a b) = sqrt(a) * sqrt(b) and sqrt(x^2) = | x | (e.g., sqrt( 5^2 ) = sqrt(25) = 5; sqrt( (-5)^2 ) = sqrt(25) = 5. In the former case x = 5 so the result is x but in the latter x = -5 and the result is | x | ).

Using these ideas we get

sqrt( 4 ( x+4)^2 ) = sqrt(4) * sqrt( (x+4)^2 ) = 2 * | x+4 | **

......!!!!!!!!...................................

RESPONSE -->

Okay! I finally understand.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

14:10:37

Extra Question: What is the simplified form of (24)^(1/3) and how did you get this result?

......!!!!!!!!...................................

RESPONSE -->

(24)^(1/3)=

= [ (8) (3) ] (1/3)

= (8)^(1/3) * (3)^(1/3)

= 2 * 3^(1/3)

confidence assessment: 2

.................................................

......!!!!!!!!...................................

14:10:44

** (24)^(1/3) =

(8 * 3)^(1/3) =

8^(1/3) * 3^(1/3) =

2 * 3^(1/3) **

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 2

.................................................

......!!!!!!!!...................................

14:25:35

Extra Question:. What is the simplified form of (x^2 y)^(1/3) * (125 x^3)^(1/3) / ( 8 x^3 y^4)^(1/3) and how did you get this result?

......!!!!!!!!...................................

RESPONSE -->

(x^2y)^(1/3) * (125x^3)^(1/3) / (8x^3y^4)(1/3) =

= (x^2)^(1/3) * y^(1/3) * (125)^(1/3)(x^3)^(1/3) / 8^(1/3) * (x^3)^(1/3) * (y^3)^(1/3) * y^(1/3)

=x^(2/3) * y^(1/3) * 5x / 2xy * y^(1/3)

=5x^(3/3) * x^(2/3) / 2xy

=5x^(2/3) / 2y

confidence assessment: 2

.................................................

......!!!!!!!!...................................

14:25:53

** (x^2y)^(1/3) * (125x^3)^(1/3)/ ( 8 x^3y^4)^(1/3)

(x^(2/3)y^(1/3)* (5x)/[ 8^(1/3) * xy(y^(1/3)]

(x^(2/3)(5x) / ( 2 xy)

5( x^(5/3)) / ( 2 xy)

5x(x^(2/3)) / ( 2 xy)

5 ( x^(2/3) ) / (2 y) **

......!!!!!!!!...................................

RESPONSE -->

Ok

self critique assessment: 2

.................................................

......!!!!!!!!...................................

14:31:26

Extra Question:. What is the simplified form of 2 sqrt(12) - 3 sqrt(27) and how did you get this result?

......!!!!!!!!...................................

RESPONSE -->

2sqrt(12) - 3sqrt(27)=

Find like radicals for combinding

2sqrt(4*3) - 3sqrt(9*7) or

2sqrt(4) * sqrt(3) - 3sqrt(9) * sqrt(3)=

2 * 2 * sqrt(3) - 3 * 3 * sqrt(3)=

4sqrt(3) - 9sqrt(3)=

-5sqrt(3)

confidence assessment: 2

.................................................

......!!!!!!!!...................................

14:31:40

** 2* sqrt(12) - 3*sqrt(27) can be written as

2* sqrt (4*3) - 3 * sqrt (9*3) by factoring out the maximum possible perfect square in each square root. This simplifies to

2* sqrt (4) sqrt(3) - 3 * sqrt (9) sqrt(3) =

2*2 sqrt 3 - 3*3 * sqrt 3 =

}

4*sqrt3 - 9 * sqrt3 =

-5sqrt3. **

......!!!!!!!!...................................

RESPONSE -->

Yes!

self critique assessment: 2

.................................................

......!!!!!!!!...................................

14:38:04

** (2*sqrt(6) +3)(3*sqrt(6)) expands by the Distributive Law to give

(2*sqrt(6) * 3sqrt(6) + 3*3sqrt(6)), which we rewrite as

(2*3)(sqrt6*sqrt6) + 9 sqrt(6) =

(6*6) + 9sqrt(6) =

36 +9sqrt(6). **

......!!!!!!!!...................................

RESPONSE -->

Okay, to be understood by using the distributive law.

(3 * sqrt(6)) to be multiplied by both (2 * sqrt(6)) and 3

(3 * sqrt(6)) * (2 * sqrt(6)) + (3 * sqrt(6)) * (3) =

(3*2)(sqrt(6) * sqrt(6)) + (3*3) * sqrt(6) =

(6 * 6) + 9sqrt(6)=

36 + 9sqrt(6)

self critique assessment: 2

.................................................

......!!!!!!!!...................................

14:42:07

R.8.90. What do you get when you rationalize the denominator of 5 / sqrt(10) and what steps did you follow to get this result?

......!!!!!!!!...................................

RESPONSE -->

To rationalize the denominator of 5/sqrt(10), it is that both the denominator and numerator to be multiplied by sqrt(10).

5/sqrt(10) * sqrt(10)/sqrt(10)=

5sqrt(10)/(sqrt(10))^2=

5sqrt(10)/10+

sqrt(10)/2

confidence assessment: 2

.................................................

......!!!!!!!!...................................

14:42:40

** Starting with 5/sqrt10 we multiply numerator and denominator by sqrt(10) to get

(5*sqrt10)/(sqrt10*sqrt10) =

(5sqrt10)/10 =

sqrt10/2 **

......!!!!!!!!...................................

RESPONSE -->

whoooah! ok I am really getting this...

self critique assessment: 2

.................................................

......!!!!!!!!...................................

14:48:23

R.8.96. What do you get when you rationalize the denominator of 10 / (4 - sqrt(2) ) and what steps did you follow to get this result?

......!!!!!!!!...................................

RESPONSE -->

To rationalize the denominator of 10/(4-sqrt(2)), it is to be multiplied by both the numerator and denominator by (4+sqrt(2)).

10(4+sqrt(2)) / (4)^2 - (sqrt2)^2=

40+10sqrt(2) / 16-2=

40+10sqrt(2) / 14

confidence assessment: 2

.................................................

......!!!!!!!!...................................

14:49:46

** Starting with

10/(4-sqrt2) multiply both numerator and denominator by 4 + sqrt(2) to get

(10* (4+sqrt2))/ (4-sqrt2)(4+sqrt2). Since (a-b)(a+b) = a^2 - b^2 the denominator is (4+sqrt(2) ) ( 4 - sqrt(2) ) = 16 - 2 = 14 so we have

(40+ 10sqrt2) / 14. Dividing numerator and denominator by 2 we end up with

(20 + 5 sqrt(2) / 7 **

......!!!!!!!!...................................

RESPONSE -->

Okay so it was to be simplified once more by 2 giving

(20 + 5sqrt(2)) / 7

self critique assessment: 2

.................................................

......!!!!!!!!...................................

14:50:45

Add comments on any surprises or insights you experienced as a result of this assignment.

......!!!!!!!!...................................

RESPONSE -->

At first I had a hard time understanding, but finally got the biggests part of what I was missing.

confidence assessment: 3

.................................................

I believe your work on R.8 has already been posted. Let me know if I'm mistaken.

XzÍ̖Ƣhx`w

assignment #009

009. `query 9

College Algebra

02-06-2007

......!!!!!!!!...................................

16:35:57

R.9.6. What steps did you follow to simplify (-8)^(-5/3) and what is your result?

......!!!!!!!!...................................

RESPONSE -->

a^(m/n)=nsqrt(a)^m=(nsqrt(a))^m

(-8)^(-5/3)=

(3sqrt(-8))^-5=

(-2)^-5=

-1/32

confidence assessment: 2

.................................................

......!!!!!!!!...................................

16:36:32

** (-8)^(-5/3) = [ (-8)^(1/3) ] ^-5. Since -8^(1/3) is -2 we get

[-2]^-5 = 1 / (-2)^5 = -1/32. **

......!!!!!!!!...................................

RESPONSE -->

yes! Finally I'm getting it.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

16:45:13

R.9.12. What steps did you follow to simplify (8/27)^(-2/3) and what is your result?

......!!!!!!!!...................................

RESPONSE -->

ok

confidence assessment: 0

.................................................

......!!!!!!!!...................................

16:48:15

** Starting with

(8/27)^(-2/3) we can write as

(8^(-2/3)/27^(-2/3)). Writing with positive exponents this becomes

(27^(2/3)/8^(2/3))

27^(2/3) = [ 27^(1/3) ] ^2 = 3^2 = 9 and

8^(2/3) = [ 8^(1/3) ] ^2 = 2^2 = 4 so the result is

(27^(2/3)/8^(2/3)) = 9/4. **

......!!!!!!!!...................................

RESPONSE -->

That was a little confusing.

self critique assessment: 2

Try to address the details, one by one, in your self-critique.

.................................................

......!!!!!!!!...................................

16:53:47

R.9.24. What steps did you follow to simplify 6^(5/4) / 6^(1/4) and what is your result?

......!!!!!!!!...................................

RESPONSE -->

a^m / a^n = (a)^m-n Law of Exponents

6^(5/4) / 6^(1/4) =

6^(5/4 - 1/4)=

6

confidence assessment: 2

.................................................

......!!!!!!!!...................................

16:54:13

** Use the laws of exponents (mostly x^a / x^b = x^(a-b) as follows:

6^(5/4) / 6^(1/4) =

6^(5/4 - 1/4) =

6^1 =

6. **

......!!!!!!!!...................................

RESPONSE -->

Yeah!.....

self critique assessment: 3

.................................................

......!!!!!!!!...................................

17:25:59

R.9.36. What steps did you follow to simplify (x^3)^(1/6) and what is your result, assuming that x is positive and expressing your result with only positive exponents?

......!!!!!!!!...................................

RESPONSE -->

Law of exponents

(x^3)^(1/6)=

x^(1/2)

confidence assessment: 2

.................................................

......!!!!!!!!...................................

17:26:12

** Express radicals as exponents and use the laws of exponents.

(x^3)^(1/6) =

x^(3 * 1/6) =

x^(1/2). **

......!!!!!!!!...................................

RESPONSE -->

yes...

self critique assessment: 2

.................................................

......!!!!!!!!...................................

17:38:11

R.9.48. What steps did you follow to simplify (x^(1/2) / y^2) ^ 4 * (y^(1/3) / x^(-2/3) ) ^ 3 and what is your result, assuming that x is positive and expressing your result with only positive exponents?

......!!!!!!!!...................................

RESPONSE -->

law of exponents

(x^(1/2)/y^2)^4 * (y^(1/3)/x^(-2/3))^3=

x^(1/2)(4)/y^(2)(4) * y^(1/3)(3)/x^(-2/3)(3)=

x^2/y^8 * y/x^-2=

x^2/y^8 * x^2/y=

x^(2+2)/y^(8+1)=

x^4/y^9

confidence assessment: 3

.................................................

......!!!!!!!!...................................

17:39:40

** (x^(1/2) / y^2) ^ 4 * (y^(1/3) / x^(-2/3) ) ^ 3 =

x^(1/2 * 4) / y^(2* 4) * y^(1/3 * 3) / x^(-2/3 * 3)=

x^2 / y^8 * y / x^(-2) =

x^2 * x^2 / y^7 =

x^4 / y^7. **

......!!!!!!!!...................................

RESPONSE -->

Ok I added the exponents of y 8+1=9 instead of subtracting 8-1=7

self critique assessment: 2

.................................................

......!!!!!!!!...................................

17:44:42

R.9.72. Factor 8 x^(1/3) - 4 x^(-2/3), x <> 0.

......!!!!!!!!...................................

RESPONSE -->

OK

confidence assessment: 1

.................................................

......!!!!!!!!...................................

17:48:51

** To factor 8x^(1/3)- 4x^(-2/3) we first need to write the expression without negative exponents. To accomplish this we multiply through by x^(2/3) / x^(2/3), obtaining

(8 x^(1/3 + 2/3) - 4x^(-2/3 + 2/3) / x^(2/3) =

(8 x - 4) / x^(2/3). We then factor 2 out of the numerator to obtain

4 ( 2x - 1) / x^(2/3).

Other correct forms include:

( 4x^(1/3) ) ( 2 - ( 1/x) )

8 x^(1/3) - 4 / x^(2/3). **

......!!!!!!!!...................................

RESPONSE -->

A little confusing.

self critique assessment: 2

Again, try to address the details in self-critique.

.................................................

your work looks good; I think you understand the basic quite well. Be sure to let me know if you have questions.