ph1 query 0

course Phy 231

2/6 7

ph1 query 0Most queries in this course will ask you questions about class notes, readings, text problems and experiments. Since the first two assignments have been lab-related, the first two queries are related to the those exercises. While the remaining queries in this course are in question-answer format, the first two will be in the form of open-ended questions. Interpret these questions and answer them as best you can.

Different first-semester courses address the issues of experimental precision, experimental error, reporting of results and analysis in different ways and at different levels. One purpose of these initial lab exercises is to familiarize your instructor with your work and you with the instructor 's expectations.

Comment on your experience with the three lab exercises you encountered in this assignment or in recent assignments.

*********************************************

Question: This question, related to the use of the TIMER program in an experimental situation, is posed in terms of a familiar first-semester system.

Suppose you use a computer timer to time a steel ball 1 inch in diameter rolling down a straight wooden incline about 50 cm long. If the computer timer indicates that on five trials the times of an object down an incline are 2.42sec, 2.56 sec, 2.38 sec, 2.47 sec and 2.31 sec, then to what extent do you think the discrepancies could be explained by each of the following:

• The lack of precision of the TIMER program.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv It is not completely in the fact that it creates a pattern if it sees one.

• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv One may not hit the button on time or the computer may not read it exactly as one puts their mouse on the button.

• Actual differences in the time required for the object to travel the same distance.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The difference in time would just depend on the speed of the object because nothing else is changing, the distance is the same.

• Differences in positioning the object prior to release.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv This may affect the distance the object travels which may change the time which would affect the values that appear on the timer.

• Human uncertainty in observing exactly when the object reached the end of the incline.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv This is very possible because we have to view things with the human eye which may result in errors. It is very hard to tell when to start and when to stop when only viewing with your eyes.

*********************************************

Question: How much uncertainty do you think each of the following would actually contribute to the uncertainty in timing a number of trials for the ball-down-an-incline lab?

• The lack of precision of the TIMER program.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv I think the Timer would have the best precision.

• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Could be very uncertain, one may hit the button too late or not right as the object is in motion/has stopped.

• Actual differences in the time required for the object to travel the same distance.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Everything should be constant so there would not be much uncertainty.

• Differences in positioning the object prior to release.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv There is a lot of human error that may be connected to this action.

• Human uncertainty in observing exactly when the object reached the end of the incline.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv It is extremely difficult to see when/where it reached the end of the incline and this issue would probably cause the most uncertainty.

*********************************************

Question: What, if anything, could you do about the uncertainty due to each of the following? Address each specifically.

• the lack of precision of the TIMER program.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv There is not much that may be done because you can’t change the way the program works. As long as you use the same program there should not be too much of an issue because the results will all be based around how that timer works.

• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv There is no way to keep this from being uncertain unless more people are involved in the experiment. There would still be at least a slight uncertainty though.

• Actual differences in the time required for the object to travel the same distance.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv keep objects from moving or being misplaced.

• Differences in positioning the object prior to release.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv There would be if the object moves. It is hard to precisely position things with only the human eye as well.

• Human uncertainty in observing exactly when the object reached the end of the incline.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv There is a lot of uncertainty with this issue because there is no way to absolutely know exactly when the object reaches the end with the human eye.

*********************************************

Question: If, as in the object-down-an-incline experiment, you know the distance an object rolls down an incline and the time required, explain how you will use this information to find the object 's average speed on the incline.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Velocity = distance/time. Therefore, I would just need to divide the distance it traveled by the time required.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: If an object travels 40 centimeters down an incline in 5 seconds then what is its average velocity on the incline? Explain how your answer is connected to your experience.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

V = d/t, the average velocity would be 40/5 which is 8 cm/sec. This result shows that the equation we picked works for this scenario.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: If the same object requires 3 second to reach the halfway point, what is its average velocity on the first half of the incline and what is its average velocity on the second half?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If 40 cm is the total distance, the average velocity on the first half of the incline would simple just be 20/3 because the time, 3 seconds, was given. 20/3 = 6.67 cm/s. It is not stated but I think the problem is implying that the total time was still 5 seconds, which would definitely make sense because the second half should not take as long as the first half. 20/2 = 10 cm/s. 10 cm/s would be the average velocity on the second half.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qAccording to the results of your introductory pendulum experiment, do you think doubling the length of the pendulum will result in half the frequency (frequency can be thought of as the number of cycles per minute), more than half or less than half?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The frequency will decrease because the length is longer, but I am not positive whether or not it will be exactly half the frequency.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qNote that for a graph of y vs. x, a point on the x axis has y coordinate zero and a point on the y axis has x coordinate zero. In your own words explain why this is so.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Since the graph is y vs x, the x axis would have a y coordinate zero or else there would be a value making it shown so that it would defeat the whole purpose of having a y vs x graph. The same goes for the y axis as well but with an x value.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qOn a graph of frequency vs. pendulum length (where frequency is on the vertical axis and length on the horizontal), what would it mean for the graph to intersect the vertical axis (i.e., what would it mean, in terms of the pendulum and its behavior, if the line or curve representing frequency vs. length goes through the vertical axis)? What would this tell you about the length and frequency of the pendulum?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

It would tell you how the length of the pendulum affects the frequency of the pendulum. If the graph intersects the vertical axis, it would mean that the frequency is positive and there is no error.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qOn a graph of frequency vs. pendulum length, what would it mean for the graph to intersect the horizontal axis (i.e., what would it mean, in terms of the pendulum and its behavior, if the line or curve representing frequency vs. length goes through the horizontal axis)? What would this tell you about the length and frequency of the pendulum?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If the frequency intersects with the x axis then the value is not positive and it is negative.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qIf a ball rolls down between two points with an average velocity of 6 cm / sec, and if it takes 5 sec between the points, then how far apart are the points?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

V = d/t therefore, v*t = d so 6*5 = 30. 30 cm is the result.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aOn the average the ball moves 6 centimeters every second, so in 5 seconds it will move 30 cm.

The formal calculation goes like this:

• We know that vAve = `ds / `dt, where vAve is ave velocity, `ds is displacement and `dt is the time interval.

• It follows by algebraic rearrangement that `ds = vAve * `dt.

• We are told that vAve = 6 cm / sec and `dt = 5 sec. It therefore follows that

• `ds = 6 cm / sec * 5 sec = 30 (cm / sec) * sec = 30 cm.

The details of the algebraic rearrangement are as follows:

• vAve = `ds / `dt. We multiply both sides of the equation by `dt:

• vAve * `dt = `ds / `dt * `dt. We simplify to obtain

• vAve * `dt = `ds, which we then write as{}`ds = vAve *`dt

Be sure to address anything you do not fully understand in your self-critique.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

V = d/t therefore, v*t = d so 6*5 = 30. 30 cm is the result.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qYou were asked to read the text and some of the problems at the end of the section. Tell your instructor about something in the text you understood up to a point but didn't understand fully. Explain what you did understand, and ask the best question you can about what you didn't understand.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I have previously taken a physics course and multiple math courses therefore I understood most of the text. I have taken vector geometry, which was a major portion of the chapter.

STUDENT QUESTION: I understood the portion discussing the nature of science and felt familiar with much of the measurement. What I did not fully understand was how do you know when to write an answer using the powers of 10 or to leave it alone? Several of the tables had values in powers of 10 for metric prefixes such as centi and mili.

INSTRUCTOR RESPONSE

Whether you use scientific notation or not depends a lot on the context of the situation.

As a rule of thumb, I would recommend going to scientific notation for numbers greater than a million (10^6) and less than a millionth (10^-6). When numbers outside this range are involved in an analysis it's a good idea to put everything into scientific notation.

And when you know that scientific notation is or is not expected by your audience, write your numbers accordingly.

QUESTION RELATED TO UNIVERSITY PHYSICS (relevant only to University Physics students)

I don’t fully understand the dot product rule

INSTRUCTOR RESPONSE

The dot product of vectors A = a_1 i + a_2 j + a_3 k and B = b_1 i + b_2 j + b_3 k is a_1 * b_1 + a_2 * b_2 + a_3 * b_3. The dot product is simply a number.

The magnitude of A is | A | = sqrt( a_1 ^ 2 + a^2 ^ 2 + a_3 ^ 2); the magnitude of B is found in a similar manner.

The dot product is equal to | A | * | B | * cos(theta), where theta is the angle between the two vectors.

If you have the coefficients of the i, j and k vectors, it is easy to calculate the dot product, and it's easy to calculate the magnitudes of the two vectors. Setting the two expressions for the dot product equal to one another, we can easily solve for cos(theta), which we can then use to find theta.

More importantly for physics, we can find the projection of one vector on another. The projection of A on B is just the component of A in the direction of B, equal to | A | cos(theta). The projection of one vector on another is important in a number of situations (e.g., the projection of the force vector on the displacement, multiplied by the displacement, is the work done by the force on the interval corresponding to the displacement).

Dot products are a standard precalculus concept. Check the documents at the links below for an introduction to vectors and dot products. You are welcome to complete these documents, in whole or in part, and submit your work. If you aren't familiar with dot products, it is recommended you do so.

http://vhcc2.vhcc.edu/dsmith/genInfo/qa_query_etc/pc2/pc2_qa_09.htm

http://vhcc2.vhcc.edu/dsmith/genInfo/qa_query_etc/pc2/pc2_qa_10.htm

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qTell your instructor about something in the problems you understand up to a point but don't fully understand. Explain what you did understand, and ask the best question you can about what you didn't understand.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I am confident so far in the course and have not had any problems on the materials.

SOME COMMON QUESTIONS:

*********************************************

QUESTION: I didn’t understand how to calculate uncertainty for a number such as 1.34. When given examples we had problems such as 1.34 ±0.5 and with that we had a formula (0.5/1.34)*100. So I do not understand how to compute uncertainty when no estimated uncertainty is given.

INSTRUCTOR RESPONSE:

The +- number is the uncertainty in the measurement.

The percent uncertainty is the uncertainty, expressed as a percent of the number being observed.

So the question in this case is simply, 'what percent of 1.34 is 0.5?'.

• 0.5 / 1.34 = .037, approximately. So 0.5 is .037 of 1.34.

• .037 is the same as 3.7%.

I recommend understanding the principles of ratio, proportion and percent as opposed to using a formula. These principles are part of the standard school curriculum, though it does not appear that these concepts have been well mastered by the majority of students who have completed the curriculum. However most students who have the prerequisites for this course do fine with these ideas, after a little review. It will in the long run save you time to do so.

There are numerous Web resources available for understanding these concepts. You should check out these resources and let me know if you have questions.

*********************************************

QUESTION: I understood the main points of changing the different units, but I’m not sure when in the problem I should change the number to 10 raised to a certain power. In example 1-8 I did not understand why they changed 70 beats/min to 2 x 10^9 s.

2 * 10^9 is about the number of seconds in 70 years.

70 beats / min were not changed to 2 * 10^9 seconds; in changing the beats / minute to beats in a lifetime, there was a step where it was necessary to multiply by 2 * 10^9 seconds.

The example actually used 80 beats / min as a basis for the solution. This was converted to beats / second by the calculation

80 beats / min * 1 minute / (60 seconds), which would yield about 1.33 beats / second.

This was then multiplied by 2 * 10^9 seconds to get the number of beats in a lifetime:

2 * 10^9 seconds * 1.33 beats / second = 3 * 10^9 beats.

In the given solution 80 beats / min * 1 minute / (60 seconds) was not actually calculated; instead 80 beats / min * 1 minute / (60 seconds) was multiplied by 2 * 10^9 seconds in one step

80 beats / min * 1 minute / (60 seconds) * 2 * 10^9 seconds = 3 * 10^9 beats.

In your instructor's opinion the unit 'beats' should have been left in the result; the text expressed the result simply as 3 * 10^9, apparently ignoring the fact that the unit 'beats' was included in the quantities on the left-hand side.

Also the text identified this number as 3 trillion. In the British terminology this would be correct; in American terminology this number would be 3 billion, not 3 trillion.

COMMENT:

I thought that these problems were pretty basic and felt that I understood them well. However, when I got to questions 14 (determine your own mass in kg) and 15 (determining how many meters away the Sun is from the Earth), I did not understand how to complete these. I know my weight in pounds, but how can that be converted to mass in kilograms? I can look up how to convert miles to meters, but is this something I should already know?

INSTRUCTOR RESPONSE:

Both of these questions could be answered knowing that an object with a mass of 1 kg has a weight of 2.2 lb, and that an inch is 2.54 centimeters. This assumes that you know how many feet in a mile, and that the Sun is 93 million miles away. All these things should be common knowledge, but it doesn't appear to be so.

For my own weight I would reason as follows:

I weigh 170 lb and every kg of my mass weighs 2.2 lb. I'll have fewer kg of mass than I will pounds of weight, so it's reasonable to conclude that my mass is 170 / 2.2 kg, or about 78 kg.

More formally 170 lb * (1 kg / (2.2 lb) ) = 170 / 2.2 kg = 78 kg, approx.. (technical point: this isn't really right because pounds and kilograms don't measure the same thing--pounds measure force and kg measure mass--but we'll worry about that later in the course).

Converting 93 million miles to kilometers:

93 million miles * (5280 feet / mile) * (12 inches / foot) * (2.54 cm / inch) * (1 meter / (100 cm) ) = 160 billion meters (approx.) or 160 million kilometers.

QUESTION

What proved to be most tricky in the problems portion was the scientific notation. I am somewhat familiar with this from

past math classes, but had trouble when dealing with using the powers of 10. I had trouble dealing with which way to move my decimal according to the problems that were written as 10^-3 versus 10^3. Which way do you move the decimal when dealing with negative or positive powers of 10?

INSTRUCTOR RESPONSE

Using your numbers, 10^3 means 10 * 10 * 10 = 1000.

• When you multiply a number by 1000 you move the decimal accordingly. For example 3.5 * 1000 = 3500.

10^-3 means 1 / 10^3 = 1 / (10 * 10 * 10) = 1 / 1000.

• When you multiply by 10^-3 you are therefore multiplying by 1 / 1000, which is the same as dividing by 1000, or multiplying by .001.

• For example 3.5 * 10^-3 = 3.5 * .001 = .0035.

• As another example 5 700 000 * 10^-3 would be 5 700 000 * (1 / 1000) = 5 700.

• From these examples you should be able to infer how the decimal point moves.

You can also search the Web under 'laws of exponents', 'arithmetic in scientific notation', and other keywords.

There isn't a single site I can recommend, and if I did find a good one its URL might change by the time you try to locate it. In any case it's best to let you judge the available materials yourself.

When searching under 'arithmetic in scientific notation' using Google, the following appear as additional suggested search phrases:

scientific notation

exponents

scientific notation metric prefixes

significant digits

multiply with scientific notation

scientific notation decimal

scientific notation lessons

addition and subtraction with scientific notation

scientific notation metric system

scientific notation lessons might be a good place to look.

QUESTION RELATED TO UNIVERSITY PHYSICS (relevant only to University Physics students)

I understand everything but the part on measuring the individual i j k vectors by using cosine.

INSTRUCTOR RESPONSE

It's not completely clear what you are asking, but I suspect it has to do with direction cosines.

The vector A = a_1 i + a_2 j + a_3 k makes angles with the directions of the x axis, the y axis and the z axis.

Let's consider first the x axis.

The direction of the x axis is the same as the direction of the unit vector i.

The projection of A on the x direction is just a_1. This is obvious, but it can also be found by projecting the A vector on the i vector.

This projection is just | A | cos(alpha), where alpha is the angle between A and the x direction.

Now A dot i = A = (a_1 i + a_2 j + a_3 k) dot i = A = a_1 i dot i + a_2 j dot i + a_3 k dot i = a_1 * 1 + a_2 * 0 + a_3 * 0 = a_1.

It's also the case that A dot i = | A | | i | cos(alpha). Since | i | = 1, it follows that A dot i = | A | cos(alpha), so that

• cos(alpha) = A dot i / | A | = a_1 / sqrt( a_1 ^ 2 + a_2 ^ 2 + a_3 ^ 2 ).

Making the convention that alpha is the angle made by the vector with the x direction, we say that cos(alpha) is the direction cosine of the vector with the x axis.

If beta and gamma are, respectively, the angles with the y and z axes, reasoning similar to the above tells us that

• cos(beta) = a_2 / sqrt( a_1 ^ 2 + a_2 ^ 2 + a_3 ^ 2 ) and

• cos(gamma) = a_3 / sqrt( a_1 ^ 2 + a_2 ^ 2 + a_3 ^ 2 ).

cos(alpha), cos(beta) and cos(gamma) are called the 'direction cosines of the vector A' with respect to the three coordinate axes.

Recall that alpha, beta and gamma are the angles made the the vector with the three respective coordinate axes.

If we know the direction cosines and the magnitude of the vector, we can among other things find its projection on any of the coordinate axes.

Please feel free to include additional comments or questions:

&#Good work. Let me know if you have questions. &#