ph1 query 19

course Phy 231

4/12 7

019. `query 19

*********************************************

Question: `qQuery class notes #20

Explain how we calculate the components of a vector given its magnitude and its angle with the positive x axis.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X component: magnitude * cos(angle)

Y component: magnitude * sin(angle)

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** STUDENT RESPONSE:

x component of the vector = magnitude * cos of the angle

y component of the vector = magnitude * sin of the angle

To get the magnitude and angle from components:

angle = arctan( y component / x component ); if the x component is less than 0 than we add 180 deg to the solution

To get the magnitude we take the `sqrt of ( x component^2 + y component^2) **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*3

*********************************************

Question: `qExplain what we mean when we say that the effect of a force is completely equivalent to the effect of two forces equal to its components.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The magnitude of the x and y components is equal to the magnitude of a force

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** If one person pulls with the given force F in the given direction the effect is identical to what would happen if two people pulled, one in the x direction with force Fx and the other in the y direction with force Fy. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*3

*********************************************

Question: `qExplain how we can calculate the magnitude and direction of the velocity of a projectile at a given point.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The magnitude is sqrt(x^2 + y^2)

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** Using initial conditions and the equations of motion we can determine the x and y velocities vx and vy at a given point, using the usual procedures for projectiles.

The magnitude of the velocity is sqrt(vx^2 + vy^2) and the angle with the pos x axis is arctan(vy / vx), plus 180 deg if x is negative. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*3

*********************************************

Question: `qExplain how we can calculate the initial velocities of a projectile in the horizontal and vertical directions given the magnitude and direction of the initial velocity.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

We can do this by doing (magnitude * cos(angle), magnitude*sin(angle))

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** Initial vel in the x direction is v cos(theta), where v and theta are the magnitude and the angle with respect to the positive x axis.

Initial vel in the y direction is v sin(theta). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*3

*********************************************

Question: `qUniv. 8.63 (11th edition 8.58) (8.56 10th edition). 40 g, dropped from 2.00 m, rebounds to 1.60 m, .200 ms contact. Impulse? Ave. force?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

V0 = 0 m/s

a = 9.8 m/s/s

ds = 2 m

weight = 40 g

ds = v0*dt + ½ * a * dt^2

2 m = 0 m/s*dt + ½ * 9.8 m/s/s* dt^2

2 m = 4.9 m/s/s * dt^2

dt = 0.64 sec

vf = v0 + a * dt

vf = 0 m/s + 9.8 m/s/s * 0.64 sec

vf = 6.3 m/s

Ds = 1.6 m

a = 9.8 m/s/s

vf = 0 m/s

vf^2 = v0^2 + a * ds

vf^2 = 31.36 m^2/s^2

vf = 5.6 m/s

change in momentum = mass * change in v

0.04 kg * (6.3 m/s + 5.6 m/s)

change in momentum = 0.476 kg m/s

impulse = F*dt

0.476 kg m/s = F * 0.0002

F = 2380 N

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** You have to find the momentum of the ball immediately before and immediately after the encounter with the floor. This allows you to find change in momentum.

Using downward as positive direction throughout:

Dropped from 2 m the ball will attain velocity of about 6.3 m/s by the time it hits the floor (v0=0, a = 9.8 m/s^2, `ds = 2 m, etc.).

It rebounds with a velocity v0 such that `ds = -1.6 m, a = 9.8 m/s^2, vf = 0. This gives rebound velocity v0 = -5.6 m/s approx.

Change in velocity is -5.6 m/s - 6.3 m/s = -11.9 m/s, approx. So change in momentum is about .04 kg * -11.9 m/s = -.48 kg m/s.

In .2 millliseconds of contact we have F `dt = `dp or F = `dp / `dt = -.48 kg m/s / (.0002 s) = -2400 Newtons, approx. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating #$&*3

"

&#Very good work. Let me know if you have questions. &#