course MTH 158 assignment #001001. Only assignment: prelim asst
......!!!!!!!!...................................
17:39:18 query R.2.46 (was R.2.36) Evaluate for x = -2, and y = 3 the expression (2x - 3) / y and explan how you got your result.
......!!!!!!!!...................................
RESPONSE --> 4-(-2)-3/3=-4-3/3=-1/3
.................................................
......!!!!!!!!...................................
17:40:07 ** Starting with (2x-3)/y we substitute x=-2 and y=3 to get (2*(-2) - 3)/3 = (-4-3)/3= -7/3. **
......!!!!!!!!...................................
RESPONSE --> mathematical error, i forgot the neg sign
.................................................
......!!!!!!!!...................................
17:41:03 query R.2. 55 (was R.2.45) Evaluate for x = 3 and y = -2: | |4x| - |5y| | and explan how you got your result.
......!!!!!!!!...................................
RESPONSE --> 4*3-5*-2 12-10 2
.................................................
......!!!!!!!!...................................
17:41:08 ** Starting with | | 4x |- | 5y | | we substitute x=3 and y=-2 to get | | 4*3 | - | 5*-2 | | = | | 12 | - | -10 | | = | 12-10 | = | 2 | = 2. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
17:42:23 query R.2.64 (was R.2.54) Explain what values, if any, must not be present in the domain of the expression (-9x^2 - x + 1) / (x^3 + x)
......!!!!!!!!...................................
RESPONSE --> i don't understand, the values of x that were in the book aren't here
.................................................
......!!!!!!!!...................................
17:43:21 ** The denominator of this expression cannot be zero, since division by zero is undefined. Since x^3 + x factors into (x^2 + 1) ( x ) we see that x^3 + x = 0 only if x^2 + 1 = 0 or x = 0. Since x^2 cannot be negative x^2 + 1 cannot be 0, so x = 0 is indeed the only value for which x^3 + x = 0. **
......!!!!!!!!...................................
RESPONSE --> oh so i should have found out how it would have equaled 0
.................................................
......!!!!!!!!...................................
17:45:03 query R.2.73 (was R.4.6). What is (-4)^-2 and how did you use the laws of exponents to get your result?
......!!!!!!!!...................................
RESPONSE --> a negative times a neg is a positive, so -4^2 would be a positive 16
.................................................
......!!!!!!!!...................................
17:45:39 **Since a^-b = 1 / (a^b), we have (-4)^-2 = 1 / (-4)^2 = 1 / 16. **
......!!!!!!!!...................................
RESPONSE --> where did the one come from?
.................................................
......!!!!!!!!...................................
17:48:25 query Extra Problem. What is (3^-2 * 5^3) / (3^2 * 5) and how did you use the laws of exponents to get your result?
......!!!!!!!!...................................
RESPONSE --> 3^2=9, 5^3=125, 3^2=9 must do square roots first. 9*125/9*5=1125/45=25
.................................................
......!!!!!!!!...................................
17:49:46 ** (3^(-2)*5^3)/(3^2*5). Grouping factors with like bases we have 3^(-2)/3^2 * 5^3 / 5. Using the fact that a^b / a^c = a^(b-c) we get 3^(-2 -2) * 5^(3-1), which gives us 3^-4 * 5^2. Using a^(-b) = 1 / a^b we get (1/3^4) * 5^2. Simplifying we have (1/81) * 25 = 25/81. **
......!!!!!!!!...................................
RESPONSE --> i thought there was just a division in there, i dind't know it was a fraction. honestly, it's hard to understand this on the computer.
.................................................
......!!!!!!!!...................................
17:54:44 query R.2.94. Express [ 5 x^-2 / (6 y^-2) ] ^ -3 with only positive exponents and explain how you used the laws of exponents to get your result.
......!!!!!!!!...................................
RESPONSE --> If you switch the numerator and denominator it becomes positive. 6^3y^6/5^3x^6 216y^6/125x^6
.................................................
......!!!!!!!!...................................
17:55:22 [ 5 x^-2 / (6 y^-2) ] ^ -3 = (5 x^-2)^-3 / (6 y^-2)^-3, since (a/b)^c = a^c / b^c. This simplifies to 5^-3 (x^-2)^-3 / [ 6^-3 (y^-2)^-3 ] since (ab)^c = a^c b^c. Then since (a^b)^c = a^(bc) we have 5^-3 x^6 / [ 6^-3 y^6 ] . We rearrange this to get the result 6^3 x^6 / (5^3 y^6), since a^-b = 1 / a^b.
......!!!!!!!!...................................
RESPONSE --> i think this is what i put....
.................................................
......!!!!!!!!...................................
17:57:47 query Extra Problem. Express (-8 x^3) ^ -2 with only positive exponents and explain how you used the laws of exponents to get your result.
......!!!!!!!!...................................
RESPONSE --> x^5/-8^2
.................................................
......!!!!!!!!...................................
17:58:39 ** ERRONEOUS STUDENT SOLUTION: (-8x^3)^-2 -1/(-8^2 * x^3+2) 1/64x^5 INSTRUCTOR COMMENT:1/64x^5 means 1 / 64 * x^5 = x^5 / 64. This is not what you meant but it is the only correct interpretation of what you wrote. Also it's not x^3 * x^2, which would be x^5, but (x^3)^2. There are several ways to get the solution. Two ways are shown below. They make more sense if you write them out in standard notation. ONE CORRECT SOLUTION: (-8x^3)^-2 = (-8)^-2*(x^3)^-2 = 1 / (-8)^2 * 1 / (x^3)^2 = 1/64 * 1/x^6 = 1 / (64 x^5). Alternatively (-8 x^3)^-2 = 1 / [ (-8 x^3)^2] = 1 / [ (-8)^2 (x^3)^2 ] = 1 / ( 64 x^6 ). **
......!!!!!!!!...................................
RESPONSE --> i'm completely confused
.................................................
......!!!!!!!!...................................
17:59:43 query R.2.90 (was R.4.36). Express (x^-2 y) / (x y^2) with only positive exponents and explain how you used the laws of exponents to get your result.
......!!!!!!!!...................................
RESPONSE --> xy/y^2
.................................................
......!!!!!!!!...................................
18:00:48 ** (1/x^2 * y) / (x * y^2) = (1/x^2 * y) * 1 / (x * y^2) = y * 1 / ( x^2 * x * y^2) = y / (x^3 y^2) = 1 / (x^3 y). Alternatively, or as a check, you could use exponents on term as follows: (x^-2y)/(xy^2) = x^-2 * y * x^-1 * y^-2 = x^(-2 - 1) * y^(1 - 2) = x^-3 y^-1 = 1 / (x^3 y).**
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
18:08:19 query Extra Problem. . Express 4 x^-2 (y z)^-1 / [ (-5)^2 x^4 y^2 z^-5 ] with only positive exponents and explain how you used the laws of exponents to get your result.
......!!!!!!!!...................................
RESPONSE --> 4z^4/-5x^2y
.................................................
......!!!!!!!!...................................
18:09:29 ** Starting with 4x^-2(yz)^-1/ [ (-5)^2 x^4 y^2 z^-5] Squaring the -5 and using the fact that (yz)^-1 = y^1 * z^-1: 4x^-2 * y^-1 * z^-1/ [25 * x^4 * y^2 * z^-5} Grouping the numbers, and the x, the y and the z expression: (4/25) * (x^-2/x^4) * (y^-1/y^2) * (z^-1/z^-5) Simplifying by the laws of exponents: (4/25) * x^(-2-4) * y^(-1-2) * z^(-1+5) Simplifying further: (4/25) * x^-6 * y^-3 * z^4 Writing with positive exponents: 4z^4/ (25x^6 * y^3 ) **
......!!!!!!!!...................................
RESPONSE --> i don't see where x^6 and y^3 came from
.................................................
......!!!!!!!!...................................
18:10:24 query R.2.122 (was R.4.72). Express 0.00421 in scientific notation.
......!!!!!!!!...................................
RESPONSE --> 4.21*10^ -3
.................................................
......!!!!!!!!...................................
18:10:42 ** 0.00421 in scientific notation is 4.21*10^-3. This is expressed on many calculators as 4.21 E-4. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
18:11:24 query R.2.128 (was R.4.78). Express 9.7 * 10^3 in decimal notation.
......!!!!!!!!...................................
RESPONSE --> 9700
.................................................
......!!!!!!!!...................................
18:11:29 ** 9.7*10^3 in decimal notation is 9.7 * 1000 = 9700 **
......!!!!!!!!...................................
RESPONSE --> k
.................................................
......!!!!!!!!...................................
18:12:59 query R.2.150 (was R.2.78) If an unhealthy temperature is one for which | T - 98.6 | > 1.5, then how do you show that T = 97 and T = 100 are unhealthy?
......!!!!!!!!...................................
RESPONSE --> 97-98.6>1.5 1.6>1.5 100-98.6>1.5 2.6>1.5
.................................................
......!!!!!!!!...................................
18:13:14 ** You can show that T=97 is unhealthy by substituting 97 for T to get | -1.6| > 1.5, equivalent to the true statement 1.6>1.5. But you can't show that T=100 is unhealthy, when you sustitute for T then it becomes | 100 - 98.6 | > 1.5, or | 1.4 | > 1.5, giving us 1.4>1.5, which is an untrue statement. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
"