Assignment 17

#$&*

course Mth 163

17 Query*********************************************

Question: `qquery Logarithms, Logarithmic Functions, Logarithmic Equations

1. For what value of x will the function y = log{base 2}(x) first reach 4

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

4=log(base2)(x) or 2^4=x which would mean x=16

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

*********************************************

Question: `qfor what value of x will the function y = ln(x) first reach y = 4?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X=e^4 x=55

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`ay = ln(x) means that e^y = x. The function y = ln(x) will first reach y = 4 when x = e^4 = 54.6 approx. **

ln(x) = 4 translates to x = e^4, which occurs at x = 55 approx.

ln(x) = 2 translates to x = e^2, which occurs at x = 7.4 approx.

(x) = 3 translates to x = e^3, which occurs at x = 20 approx. **

*********************************************

Question: `q3. Explain why the negative y axis is an asymptote for a log{base b}(x) function explain why this is so only if b > 1

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Large negative values of x lead to positive b^x values close to zero, which cause horizontal asymptotes on the negative x axis

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** the log{base b} function is the inverse of the y = b^x function. Assuming b > 1, large negative values of x lead to

positive b^x values near zero, resulting in a horizontal asymptotes along the negative x axis.

When the columns are reversed we end up with small positive values of x associated with large negative y, resulting in a

vertical asymptote along the negative y axis.

You can take a negative power of any positive b, greater than 1 or not.

For b > 1, larger negative powers make the result smaller, and the negative x axis is an asymptote for the function y = b^x.

For b < 1, larger positive powers make the result smaller, and the positive x axis becomes the asymptote. **

*********************************************

Question: `q5. What are your estimates for the values of b for the two exponential functions on the given graph?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A=1 a*b=3.5

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** The exponential function y = A b^x has y intercept (0, A) and basic point (1, A * b).

Both graphs pass thru (0, 1) so A = 1.

The x = 1 points are (1, 3.5) and (1, 7.3) approx.. Thus for the first A * b = 3.5; since A = 1 we have b = 3.5. For the

second we similarly conclude that b = 7.3.

So the functions are y = 3.5^x and y = 7.3^x, approx.. **

*********************************************

Question: `qAt what points will each of the logarithmic functions reach the values y = 2, y = 3 and y = 4?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3.5 and 7.3

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** Using trial and error we find that for y = 3.5^x, the x values .55, .88 and 1.11 give us y = 2, 3 and 4.

We find that for y = 7.3^x, the x values .35, .55 and .70 give us y = 2, 3 and 4. **

*********************************************

Question: `q7. What is the decibel level of a sound which is 10,000 times as loud as hearing threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Db=10 log(1/10)=10 10*4=40

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`adB = 10 log(I / I0). If the sound is 10,000 times as loud as hearing threshold intensity then I / I0 = 10,000.

log(10,000) = 4, since 10^4 = 10,000.

So dB = 10 log(I / I0) = 10 * 4 = 40.

*********************************************

Question: `qWhat are the decibel levels of sounds which are 100, 10,000,000 and 1,000,000,000 times louder than threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Log(100)=20 db log(10000000)=70 db log(1000000000)=90db

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a10 log(100) = 10 * 2 = 20, so a sound which is 100 times hearing threshold intensity is a 20 dB sound.

10 log(10,000,000) = 10 * 7 = 70, so a sound which is 100 times hearing threshold intensity is a 70 dB sound.

10 log(1,000,000,000) = 10 * 9 = 90, so a sound which is 100 times hearing threshold intensity is a 90 dB sound.

*********************************************

Question: `qhow can you easily find these decibel levels without using a calculator?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The log of a number is equal to thwe number of 0s that are present.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aSince 10^1, 10^2, 10^3, ... are 10, 100, 1000, ..., the power of 10 is the number of zeros in the result. Since the log

of a number is the power to which 10 must be raised to get this number, the log of one of these numbers is equal to the

number of zeros.

*********************************************

Question: `qWhat are the decibel levels of sounds which are 500, 30,000,000 and 7,000,000,000 times louder than threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Log(500)=27 db log(30000000)=75 db log(7000000000)=98.5 db

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a10 log(500) = 10 * 2.699 = 26.99 so this is a 26.99 dB sound.

10 log(30,000,000) = 10 * 7.477 = 74.77 so this is a 74.77 dB sound.

10 log(7,000,000,000) = 10 * 9.845 = 98.45 so this is a 98.45 dB sound.

*********************************************

Question: `q8. If a sound measures 40 decibels, then what is the intensity of the sound, as a multiple of the hearing threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

10000

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** Let x be the ratio I / I0. Then we solve the equation 40= 10*log(x). You solve this by dividing by 10 to get

log(x) = 4 then translating this to exponential form

x = 10^4 = 10,000.

The sound is 10,000 times the hearing threshold intensity, so

I = 10,000 I0. **

*********************************************

Question: `qAnswer the same question for sounds measuring 20, 50, 80 and 100 decibels.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

20=100 50=100 000 80=100 000 000 100=10 000 000 000

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** since dB = 10 log(I / I0) we have

log(I/I0) = dB / 10. Translating to exponential form this tells us that

I / I0 = 10^(dB/10) wo that

I = I0 * 10^(dB/10).

For a 20 dB sound this gives us

I = I0 * 10^(20/10) = I0 * 10^2 = 100 I0. The sound is 100 times the intensity of the hearing threshold sound.

For a 50 dB sound this gives us

I = I0 * 10^(50/10) = I0 * 10^5 = 100,000 I0. The sound is 100,000 times the intensity of the hearing threshold sound.

For an 80 dB sound this gives us

}I = I0 * 10^(80/10) = I0 * 10^8 = 100,000,000 I0. The sound is 100,000,000 times the intensity of the hearing

threshold sound.

For a 100 dB sound this gives us

I = I0 * 10^(100/10) = I0 * 10^10 = 10,000,000,000 I0. The sound is 10,000,000,000 times the intensity of the

hearing threshold sound. **

*********************************************

Question: `qWhat equation you would solve to find the intensity for decibel levels of 35, 83 and 117 dB.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

35=10 log(1/10)

83=10 log(1/10)

117 = 10 log(1/10)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** the equation to find I is dB = 10 log(I / I0) so the equations would be

35 = 10 log(I / I0)

83 = 10 log(I / I0)

117 = 10 log(I / I0).

The solution for I in the equation dB = 10 log(I / I0) is

I = I0 * 10^(dB/10). For the given values we would get solutions

10^(35/10) I0 = 3162.3 I0

10^(83/10) I0 = 199526231.5 I0

10^(117/10) I0 = 501187233627 I0 **

*********************************************

Question: `q9. is log(x^y) = x log(y) valid? If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No because it should be y log instead of x log

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log(a^b) = b log a so log(x^y) should be y log (x), not x log(y). **

*********************************************

Question: `qis log(x/y) = log(x) - log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes because of the exponential law

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aYes , this is valid. It is the inverse of the exponential law a^x / a^y = a^(x-y).

*********************************************

Question: `qis log (x * y) = log(x) * log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No it should be log(x) + log(y)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x * y) = log(x) + log(y)

*********************************************

Question: `qis 2 log(x) = log(2x) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No should be log(x^2)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log(a^b) = b log a so 2 log(x) = log(x^2), not log(2x). **

*********************************************

Question: `qis log(x + y) = log(x) + log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No should be equal to log(xy)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log(x) + log(y) = log(xy), not log(x+y). **

*********************************************

Question: `qis log(x) + log(y) = log(xy) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes. Law of exponents

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aThis is value. It is inverse to the law of exponents a^x*a^y = a^(x+y)

*********************************************

Question: `qis log(x^y) = (log(x)) ^ y valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x^y)=y log(x)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x^y) = y log (x).

This is the invers of the law (x^a)^b = x^(ab)

*********************************************

Question: `qis log(x - y) = log(x) - log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x-y)=logx/logy

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x-y) = log x/ log y

*********************************************

Question: `qis 3 log(x) = log(x^3) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aYes. log(x^a) = a log(x).

*********************************************

Question: `qis log(x^y) = y + log(x) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x^y)=y log(x)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x^y) = y log(x).

*********************************************

Question: `qis log(x/y) = log(x) / log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x/y)=log x- log y

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x/y) = log(x) - log(y).

*********************************************

Question: `qis log(x^y) = y log(x) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

yes

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aThis is valid.

*********************************************

Question: `q10. what do you get when you simplify log {base 8} (1024)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

10/3

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aCOMMON ERROR: log {base 8} (1024) = Log (1024) / Log (8) = 3.33333

EXPLANATION:

log {base 8} (1024) = Log (1024) / Log (8) is correct, but 3.33333 is not an exact answer.

log {base 8 } (1024) = log {base 8 } (2^10).

Since 8 = 2^3, 2^10 = 2^(3 * 10/3) = (2^3)^(10/3) = 8^(10/3).

Thus log {base 8} 1024 = log{base 8} 8^(10/3) = 10/3.

Note that 10/3 is not exactly equal to 3.33333. You need to give exact answers where possible.

*********************************************

Question: `qwhat do you get when you simplify log {base 2} (4 * 32)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

7

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log{base 2}(4*32) = log{bse 2}(2^2 * 2^5) = log{base 2}(2^7) = 7. **

*********************************************

Question: `qwhat do you get when you simplify log (1000)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3 because there are 3 0s

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aSince 10^3 = 1000, we have log (1000) = 3

*********************************************

Question: `qwhat do you get when you simplify ln(3xy)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

In(3)+in(x)+in(y)+1.0986

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a ln(3xy) = ln (3) + ln(x) + ln(y) = 1.0986 + ln(x) + ln(y)

*********************************************

Question: `qwhat do you get when you simplify log(3) + log(7) + log(41)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This is not a coherent number power of 10

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a log(3) + log(7) + log(41) = log (3*7*41). 3 * 7 * 41 is not a rational-number power of 10 so this can't be evaluated

exactly.

*********************************************

Question: `q11. Show how you used the given values to find the logarithm of 12. Explain why the given values don't help much if you want the log of 17.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I didn’t understand this

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

0

.............................................

Given Solution:

`a** The problem was as follows: Given that log(2) = .301, log(3) = .477, log(5) = .699, log(7) = .845, find log(4),

log(6), log(8), and log(9). Use the given values to find the logarithm of every possible integer between 11 and 20.

To get log(12), given the logs of 2, 3, 5 and 7, you have to break 12 down into a product of these numbers.

Since 12 = 2 * 2 * 3 we have

log(12) = log(2) + log(2) + log(3) = .301 + .301 + .477 = 1.079.

Your calculator will confirm this result. **

*********************************************

Question: `q12. What do you get when you solve 3 ^ (2x) = 7 ^ (x-4), and how did you solve the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-31

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a ** log[3^(2x)]= log [7^(x-4)]. Using the laws of logarithms we get

2xlog(3)= (x-4) log(7). The distributive law gives us

2xlog(3)= xlog(7)- 4log(7). Rearranging to get all x terms on one side we get

2xlog(3)- xlog(7)= -4log(7). Factor x out of the left-hand side to get

x ( 2 log(3) - log(7) ) = -4 log(7) so that

x = -4 log(7) / [ 2 log(3) - log(7) ].

Evaluating this we get x = -31, approx. **

*********************************************

Question: `qWhat do you get when you solve 2^(3x) + 2^(4x) = 9, and how did you solve the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I don’t think this can be solved to find x

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`aCOMMON ERROR: 3xlog(2) + 4xlog(2) = 9

Explanation:

Your equation would require that log( 2^(3x) + 2^(4x) ) = log(2^(3x) ) + log(2^(4x)).

This isn't the case. log(a + b) is not equal to log(a) + log(b). log(a) + log(b) = log(a * b), not log(a + b).

If this step was valid you would have a good solution.

However it turns out that this equation cannot be solved exactly for x. The best we can do is certain sophisticated forms

of trial and error. **

*********************************************

Question: `qWhat do you get when you solve 3^(2x-1) * 3^(3x+2) = 12, and how did you solve the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

.2524

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** 3^(2x-1) * 3^(3x+2) = 12. Take log of both sides:

log{3} [3^(2x-1) * 3^(3x+2)] = log{3} 12. Use log(a*b) = log(a) + log(b):

log{3}(3^(2x-1)) + log{3}(3^(3x+2) = log{3} 12. Use laws of logs:

(2x-1) + (3x+2) = log{3} 12. Rearrange the left-hand side:

5x + 1 = log{3}12. Subtract 1 from both sides then divide both sides by 5:

x = (log {3}(12) -1)/ 5. Use the fact that log{b}(x) = log x / (log b) to get

x = (log(12) / log(3) - 1) / 5. Evaluate using calculator:

x = .2524 **

*********************************************

Question: `qquery fitting exponential functions to data

1. what is the exponential function of form A (2^(k t) ) such that the graph passes thru points (-4,3) and (7,2), and what equations did you solve to obtain your result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=a*2^(kx)

K=-.053

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** Recall when we substituted the coordinates of three points into the form y = a x^2 + b x + c of a quadratic, then solved the resulting system of three linear equations to get the values of a, b and c. We do something similar here, but this time the form is y = A * 2^(kx). Our two unknowns will be A and k, and we will only require two equations to solve for our two unknowns. We therefore need only two points.

Substituting data points into the form y = A * 2^(kx) we get

3 = A * 2^(-4k) (from the data point (-4,3)) and

2 = A * 2^( 7k) (from the data point (7,2)).

When we solved the three equations for the quadratic model, we added multiples of equations in order to eliminate variables. However adding multiples of equations doesn't work here. What does work is dividing one equation by another, which eliminates the variable A.

Dividing the first equation by the second we get

3/2 = A * 2^(-4k) / (A * 2^(7k) ), which simplifies to

1.5 = 2^(-4k)/ 2^(7k).

Now by the laws of exponents 2^(-4k)/ 2^(7k) = 2^(-4-7k)= 2^(-11 k), so that

log(2^(-11 k)) = log(1.5) and

-11 k * log(2) = log 1.5. We solve this for k, obtaining

k = log(1.5) / (-11 log(2)).

Evaluating with a calculator we find that k = -.053, approx..

Just as we did when solving for the quadratic model, once we have evaluated an unknown we substitute that value into our original equations.

Our first equation was 3 = A * 2^(-4k), which is easily solve for A to give us

A = 3 / (2 ^(-4k) ).

Substituting k = -.053 we get

A= 3/ 1.158 = 2.591.

Now we know the values of both A and k, which we substitute into our form y = A * 2^(kx) to obtain our model

y = 2.591(2^-.053t). **

*********************************************

Question: `qwhat is the exponential function of form A e^(k2 t) such that the graph passes thru points thru points (-4,3) and (7,2) and how did you solve the equations to find this function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=2.591(e^-.039t)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** Substituting data points into the form y = A * e^(kx) we get

3= A * e^(-4k) and

2= A * e^(7k)

Dividing the first equation by the second we get

1.5= e^(-4k)/ e^(7k)= e^(-4-7k)= 2^(-11k)

so that

ln(e^(-11k)) = ln(1.5) and

-11 k = 1.5 so that

k= ln(1.5) / (-11). Evaluating with a calculator:

k= -.037 approx.

From the first equation

A = 3 / (e ^(-4k) ). Substituting k = -.037 we get

A= 3/ 1.158 = 2.591.

So our form y = A * e^(kx) gives us

y= 2.591(e^-.039 t). **

*********************************************

Question: `qwhat is the exponential function of form A b^t such that the graph passes thru points thru points(-4,3) and (7,2).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=2.549*.96^t

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** Our equations are

3= Ab^-4

2= Ab^7

3/2= Ab^-4/(Ab^7)

1.5= b^-11

b= .96

3= A * .96 ^ -4

3= A * 1.177

2.549= A

y= 2.549 * .96^t **

*********************************************

Question: `q2. Find the exponential function corresponding to the points (5,3) and (10,2).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=4.5*.922^t

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** Using y = A b^t we get equations

3= Ab^5

2= Ab^10

Dividing first by second:

3/2= Ab^5/(Ab^10).

1.5= b^-5

b= .922

Now A = 3 / b^5 = 3 / .922^5 = 4.5.

Our model is

y = 4.5 * .922^t. **

*********************************************

Question: `qWhat are k1 and k2 such that b = e^k2 = 2^k1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-.117

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** .922 = e^k2 is directly solved by taking the natural log of both sides to get

k2 = ln(.922) = -.081.

.922= 2^k1 is solved as follows:

log(.922) = log(2) k1

k1 = log(.922) / log(2) = -.117 approx..

Using these values for k1 and k2 we get

}g(x) = A * 2^(k1 t) = 4.5 * 2^(-.117 t) and

h(x) = A e^(k2 t) = 4.5 e^(-.081 t). ****

*********************************************

Question: `q3. earthquakes measure R1 = 7.4 and R2 = 8.2.

What is the ratio I2 / I1 of intensity and how did you find it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

R2=8.2 and R1=7.4 that would mean that an earthquake with R= 8.2 is about 6.3 times as intense as an earthquake with R=7.4

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** R1 = log(I1 / I0) and R2 = log(I2 / I0) so

I1/I0 = 10^R1 and I1 = 10^R1 * I0 and

I2/I0 = 10^R2 and I2 = 10^R2 * I0 so

I2 / I1 = (I0 * 10^R2) / (I0 * 10^R1) = 10^R2 / 10^R1 = 10^(R2-R1).

So if R2 = 8.2 and R1 = 7.4 we have

I2 / I1 = 10^(R2 - R1) = 10^(8.2 - 7.4) = 10^.8 = 6.3 approx.

An earthquake with R = 8.2 is about 6.3 times as intense as an earthquake with R = 7.4. **

*********************************************

Question: `q4. I2 / I1 ratios

If one earthquake as an R value 1.6 higher than another, what is the ratio I2 / I1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

EQ with r value 1.6 higher than another is 40 times worse

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** As before I2 / I1 = 10^(R2-R1). If R2 is 1.6 greater than R1 we have R2 - R1 = 1.6 and

I2 / I1 = 10^1.6 = 40 approx.

An earthquake with R value 1.6 higher than another is 40 times as intense. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

Assignment 17

#$&*

course Mth 163

17 Query*********************************************

Question: `qquery Logarithms, Logarithmic Functions, Logarithmic Equations

1. For what value of x will the function y = log{base 2}(x) first reach 4

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

4=log(base2)(x) or 2^4=x which would mean x=16

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

*********************************************

Question: `qfor what value of x will the function y = ln(x) first reach y = 4?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X=e^4 x=55

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`ay = ln(x) means that e^y = x. The function y = ln(x) will first reach y = 4 when x = e^4 = 54.6 approx. **

ln(x) = 4 translates to x = e^4, which occurs at x = 55 approx.

ln(x) = 2 translates to x = e^2, which occurs at x = 7.4 approx.

(x) = 3 translates to x = e^3, which occurs at x = 20 approx. **

*********************************************

Question: `q3. Explain why the negative y axis is an asymptote for a log{base b}(x) function explain why this is so only if b > 1

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Large negative values of x lead to positive b^x values close to zero, which cause horizontal asymptotes on the negative x axis

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** the log{base b} function is the inverse of the y = b^x function. Assuming b > 1, large negative values of x lead to

positive b^x values near zero, resulting in a horizontal asymptotes along the negative x axis.

When the columns are reversed we end up with small positive values of x associated with large negative y, resulting in a

vertical asymptote along the negative y axis.

You can take a negative power of any positive b, greater than 1 or not.

For b > 1, larger negative powers make the result smaller, and the negative x axis is an asymptote for the function y = b^x.

For b < 1, larger positive powers make the result smaller, and the positive x axis becomes the asymptote. **

*********************************************

Question: `q5. What are your estimates for the values of b for the two exponential functions on the given graph?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A=1 a*b=3.5

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** The exponential function y = A b^x has y intercept (0, A) and basic point (1, A * b).

Both graphs pass thru (0, 1) so A = 1.

The x = 1 points are (1, 3.5) and (1, 7.3) approx.. Thus for the first A * b = 3.5; since A = 1 we have b = 3.5. For the

second we similarly conclude that b = 7.3.

So the functions are y = 3.5^x and y = 7.3^x, approx.. **

*********************************************

Question: `qAt what points will each of the logarithmic functions reach the values y = 2, y = 3 and y = 4?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3.5 and 7.3

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** Using trial and error we find that for y = 3.5^x, the x values .55, .88 and 1.11 give us y = 2, 3 and 4.

We find that for y = 7.3^x, the x values .35, .55 and .70 give us y = 2, 3 and 4. **

*********************************************

Question: `q7. What is the decibel level of a sound which is 10,000 times as loud as hearing threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Db=10 log(1/10)=10 10*4=40

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`adB = 10 log(I / I0). If the sound is 10,000 times as loud as hearing threshold intensity then I / I0 = 10,000.

log(10,000) = 4, since 10^4 = 10,000.

So dB = 10 log(I / I0) = 10 * 4 = 40.

*********************************************

Question: `qWhat are the decibel levels of sounds which are 100, 10,000,000 and 1,000,000,000 times louder than threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Log(100)=20 db log(10000000)=70 db log(1000000000)=90db

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a10 log(100) = 10 * 2 = 20, so a sound which is 100 times hearing threshold intensity is a 20 dB sound.

10 log(10,000,000) = 10 * 7 = 70, so a sound which is 100 times hearing threshold intensity is a 70 dB sound.

10 log(1,000,000,000) = 10 * 9 = 90, so a sound which is 100 times hearing threshold intensity is a 90 dB sound.

*********************************************

Question: `qhow can you easily find these decibel levels without using a calculator?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The log of a number is equal to thwe number of 0s that are present.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aSince 10^1, 10^2, 10^3, ... are 10, 100, 1000, ..., the power of 10 is the number of zeros in the result. Since the log

of a number is the power to which 10 must be raised to get this number, the log of one of these numbers is equal to the

number of zeros.

*********************************************

Question: `qWhat are the decibel levels of sounds which are 500, 30,000,000 and 7,000,000,000 times louder than threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Log(500)=27 db log(30000000)=75 db log(7000000000)=98.5 db

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a10 log(500) = 10 * 2.699 = 26.99 so this is a 26.99 dB sound.

10 log(30,000,000) = 10 * 7.477 = 74.77 so this is a 74.77 dB sound.

10 log(7,000,000,000) = 10 * 9.845 = 98.45 so this is a 98.45 dB sound.

*********************************************

Question: `q8. If a sound measures 40 decibels, then what is the intensity of the sound, as a multiple of the hearing threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

10000

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** Let x be the ratio I / I0. Then we solve the equation 40= 10*log(x). You solve this by dividing by 10 to get

log(x) = 4 then translating this to exponential form

x = 10^4 = 10,000.

The sound is 10,000 times the hearing threshold intensity, so

I = 10,000 I0. **

*********************************************

Question: `qAnswer the same question for sounds measuring 20, 50, 80 and 100 decibels.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

20=100 50=100 000 80=100 000 000 100=10 000 000 000

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** since dB = 10 log(I / I0) we have

log(I/I0) = dB / 10. Translating to exponential form this tells us that

I / I0 = 10^(dB/10) wo that

I = I0 * 10^(dB/10).

For a 20 dB sound this gives us

I = I0 * 10^(20/10) = I0 * 10^2 = 100 I0. The sound is 100 times the intensity of the hearing threshold sound.

For a 50 dB sound this gives us

I = I0 * 10^(50/10) = I0 * 10^5 = 100,000 I0. The sound is 100,000 times the intensity of the hearing threshold sound.

For an 80 dB sound this gives us

}I = I0 * 10^(80/10) = I0 * 10^8 = 100,000,000 I0. The sound is 100,000,000 times the intensity of the hearing

threshold sound.

For a 100 dB sound this gives us

I = I0 * 10^(100/10) = I0 * 10^10 = 10,000,000,000 I0. The sound is 10,000,000,000 times the intensity of the

hearing threshold sound. **

*********************************************

Question: `qWhat equation you would solve to find the intensity for decibel levels of 35, 83 and 117 dB.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

35=10 log(1/10)

83=10 log(1/10)

117 = 10 log(1/10)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** the equation to find I is dB = 10 log(I / I0) so the equations would be

35 = 10 log(I / I0)

83 = 10 log(I / I0)

117 = 10 log(I / I0).

The solution for I in the equation dB = 10 log(I / I0) is

I = I0 * 10^(dB/10). For the given values we would get solutions

10^(35/10) I0 = 3162.3 I0

10^(83/10) I0 = 199526231.5 I0

10^(117/10) I0 = 501187233627 I0 **

*********************************************

Question: `q9. is log(x^y) = x log(y) valid? If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No because it should be y log instead of x log

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log(a^b) = b log a so log(x^y) should be y log (x), not x log(y). **

*********************************************

Question: `qis log(x/y) = log(x) - log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes because of the exponential law

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aYes , this is valid. It is the inverse of the exponential law a^x / a^y = a^(x-y).

*********************************************

Question: `qis log (x * y) = log(x) * log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No it should be log(x) + log(y)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x * y) = log(x) + log(y)

*********************************************

Question: `qis 2 log(x) = log(2x) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No should be log(x^2)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log(a^b) = b log a so 2 log(x) = log(x^2), not log(2x). **

*********************************************

Question: `qis log(x + y) = log(x) + log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No should be equal to log(xy)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log(x) + log(y) = log(xy), not log(x+y). **

*********************************************

Question: `qis log(x) + log(y) = log(xy) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes. Law of exponents

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aThis is value. It is inverse to the law of exponents a^x*a^y = a^(x+y)

*********************************************

Question: `qis log(x^y) = (log(x)) ^ y valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x^y)=y log(x)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x^y) = y log (x).

This is the invers of the law (x^a)^b = x^(ab)

*********************************************

Question: `qis log(x - y) = log(x) - log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x-y)=logx/logy

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x-y) = log x/ log y

*********************************************

Question: `qis 3 log(x) = log(x^3) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aYes. log(x^a) = a log(x).

*********************************************

Question: `qis log(x^y) = y + log(x) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x^y)=y log(x)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x^y) = y log(x).

*********************************************

Question: `qis log(x/y) = log(x) / log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x/y)=log x- log y

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x/y) = log(x) - log(y).

*********************************************

Question: `qis log(x^y) = y log(x) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

yes

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aThis is valid.

*********************************************

Question: `q10. what do you get when you simplify log {base 8} (1024)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

10/3

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aCOMMON ERROR: log {base 8} (1024) = Log (1024) / Log (8) = 3.33333

EXPLANATION:

log {base 8} (1024) = Log (1024) / Log (8) is correct, but 3.33333 is not an exact answer.

log {base 8 } (1024) = log {base 8 } (2^10).

Since 8 = 2^3, 2^10 = 2^(3 * 10/3) = (2^3)^(10/3) = 8^(10/3).

Thus log {base 8} 1024 = log{base 8} 8^(10/3) = 10/3.

Note that 10/3 is not exactly equal to 3.33333. You need to give exact answers where possible.

*********************************************

Question: `qwhat do you get when you simplify log {base 2} (4 * 32)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

7

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log{base 2}(4*32) = log{bse 2}(2^2 * 2^5) = log{base 2}(2^7) = 7. **

*********************************************

Question: `qwhat do you get when you simplify log (1000)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3 because there are 3 0s

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aSince 10^3 = 1000, we have log (1000) = 3

*********************************************

Question: `qwhat do you get when you simplify ln(3xy)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

In(3)+in(x)+in(y)+1.0986

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a ln(3xy) = ln (3) + ln(x) + ln(y) = 1.0986 + ln(x) + ln(y)

*********************************************

Question: `qwhat do you get when you simplify log(3) + log(7) + log(41)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This is not a coherent number power of 10

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a log(3) + log(7) + log(41) = log (3*7*41). 3 * 7 * 41 is not a rational-number power of 10 so this can't be evaluated

exactly.

*********************************************

Question: `q11. Show how you used the given values to find the logarithm of 12. Explain why the given values don't help much if you want the log of 17.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I didn’t understand this

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

0

.............................................

Given Solution:

`a** The problem was as follows: Given that log(2) = .301, log(3) = .477, log(5) = .699, log(7) = .845, find log(4),

log(6), log(8), and log(9). Use the given values to find the logarithm of every possible integer between 11 and 20.

To get log(12), given the logs of 2, 3, 5 and 7, you have to break 12 down into a product of these numbers.

Since 12 = 2 * 2 * 3 we have

log(12) = log(2) + log(2) + log(3) = .301 + .301 + .477 = 1.079.

Your calculator will confirm this result. **

*********************************************

Question: `q12. What do you get when you solve 3 ^ (2x) = 7 ^ (x-4), and how did you solve the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-31

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a ** log[3^(2x)]= log [7^(x-4)]. Using the laws of logarithms we get

2xlog(3)= (x-4) log(7). The distributive law gives us

2xlog(3)= xlog(7)- 4log(7). Rearranging to get all x terms on one side we get

2xlog(3)- xlog(7)= -4log(7). Factor x out of the left-hand side to get

x ( 2 log(3) - log(7) ) = -4 log(7) so that

x = -4 log(7) / [ 2 log(3) - log(7) ].

Evaluating this we get x = -31, approx. **

*********************************************

Question: `qWhat do you get when you solve 2^(3x) + 2^(4x) = 9, and how did you solve the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I don’t think this can be solved to find x

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`aCOMMON ERROR: 3xlog(2) + 4xlog(2) = 9

Explanation:

Your equation would require that log( 2^(3x) + 2^(4x) ) = log(2^(3x) ) + log(2^(4x)).

This isn't the case. log(a + b) is not equal to log(a) + log(b). log(a) + log(b) = log(a * b), not log(a + b).

If this step was valid you would have a good solution.

However it turns out that this equation cannot be solved exactly for x. The best we can do is certain sophisticated forms

of trial and error. **

*********************************************

Question: `qWhat do you get when you solve 3^(2x-1) * 3^(3x+2) = 12, and how did you solve the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

.2524

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** 3^(2x-1) * 3^(3x+2) = 12. Take log of both sides:

log{3} [3^(2x-1) * 3^(3x+2)] = log{3} 12. Use log(a*b) = log(a) + log(b):

log{3}(3^(2x-1)) + log{3}(3^(3x+2) = log{3} 12. Use laws of logs:

(2x-1) + (3x+2) = log{3} 12. Rearrange the left-hand side:

5x + 1 = log{3}12. Subtract 1 from both sides then divide both sides by 5:

x = (log {3}(12) -1)/ 5. Use the fact that log{b}(x) = log x / (log b) to get

x = (log(12) / log(3) - 1) / 5. Evaluate using calculator:

x = .2524 **

*********************************************

Question: `qquery fitting exponential functions to data

1. what is the exponential function of form A (2^(k t) ) such that the graph passes thru points (-4,3) and (7,2), and what equations did you solve to obtain your result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=a*2^(kx)

K=-.053

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** Recall when we substituted the coordinates of three points into the form y = a x^2 + b x + c of a quadratic, then solved the resulting system of three linear equations to get the values of a, b and c. We do something similar here, but this time the form is y = A * 2^(kx). Our two unknowns will be A and k, and we will only require two equations to solve for our two unknowns. We therefore need only two points.

Substituting data points into the form y = A * 2^(kx) we get

3 = A * 2^(-4k) (from the data point (-4,3)) and

2 = A * 2^( 7k) (from the data point (7,2)).

When we solved the three equations for the quadratic model, we added multiples of equations in order to eliminate variables. However adding multiples of equations doesn't work here. What does work is dividing one equation by another, which eliminates the variable A.

Dividing the first equation by the second we get

3/2 = A * 2^(-4k) / (A * 2^(7k) ), which simplifies to

1.5 = 2^(-4k)/ 2^(7k).

Now by the laws of exponents 2^(-4k)/ 2^(7k) = 2^(-4-7k)= 2^(-11 k), so that

log(2^(-11 k)) = log(1.5) and

-11 k * log(2) = log 1.5. We solve this for k, obtaining

k = log(1.5) / (-11 log(2)).

Evaluating with a calculator we find that k = -.053, approx..

Just as we did when solving for the quadratic model, once we have evaluated an unknown we substitute that value into our original equations.

Our first equation was 3 = A * 2^(-4k), which is easily solve for A to give us

A = 3 / (2 ^(-4k) ).

Substituting k = -.053 we get

A= 3/ 1.158 = 2.591.

Now we know the values of both A and k, which we substitute into our form y = A * 2^(kx) to obtain our model

y = 2.591(2^-.053t). **

*********************************************

Question: `qwhat is the exponential function of form A e^(k2 t) such that the graph passes thru points thru points (-4,3) and (7,2) and how did you solve the equations to find this function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=2.591(e^-.039t)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** Substituting data points into the form y = A * e^(kx) we get

3= A * e^(-4k) and

2= A * e^(7k)

Dividing the first equation by the second we get

1.5= e^(-4k)/ e^(7k)= e^(-4-7k)= 2^(-11k)

so that

ln(e^(-11k)) = ln(1.5) and

-11 k = 1.5 so that

k= ln(1.5) / (-11). Evaluating with a calculator:

k= -.037 approx.

From the first equation

A = 3 / (e ^(-4k) ). Substituting k = -.037 we get

A= 3/ 1.158 = 2.591.

So our form y = A * e^(kx) gives us

y= 2.591(e^-.039 t). **

*********************************************

Question: `qwhat is the exponential function of form A b^t such that the graph passes thru points thru points(-4,3) and (7,2).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=2.549*.96^t

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** Our equations are

3= Ab^-4

2= Ab^7

3/2= Ab^-4/(Ab^7)

1.5= b^-11

b= .96

3= A * .96 ^ -4

3= A * 1.177

2.549= A

y= 2.549 * .96^t **

*********************************************

Question: `q2. Find the exponential function corresponding to the points (5,3) and (10,2).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=4.5*.922^t

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** Using y = A b^t we get equations

3= Ab^5

2= Ab^10

Dividing first by second:

3/2= Ab^5/(Ab^10).

1.5= b^-5

b= .922

Now A = 3 / b^5 = 3 / .922^5 = 4.5.

Our model is

y = 4.5 * .922^t. **

*********************************************

Question: `qWhat are k1 and k2 such that b = e^k2 = 2^k1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-.117

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** .922 = e^k2 is directly solved by taking the natural log of both sides to get

k2 = ln(.922) = -.081.

.922= 2^k1 is solved as follows:

log(.922) = log(2) k1

k1 = log(.922) / log(2) = -.117 approx..

Using these values for k1 and k2 we get

}g(x) = A * 2^(k1 t) = 4.5 * 2^(-.117 t) and

h(x) = A e^(k2 t) = 4.5 e^(-.081 t). ****

*********************************************

Question: `q3. earthquakes measure R1 = 7.4 and R2 = 8.2.

What is the ratio I2 / I1 of intensity and how did you find it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

R2=8.2 and R1=7.4 that would mean that an earthquake with R= 8.2 is about 6.3 times as intense as an earthquake with R=7.4

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** R1 = log(I1 / I0) and R2 = log(I2 / I0) so

I1/I0 = 10^R1 and I1 = 10^R1 * I0 and

I2/I0 = 10^R2 and I2 = 10^R2 * I0 so

I2 / I1 = (I0 * 10^R2) / (I0 * 10^R1) = 10^R2 / 10^R1 = 10^(R2-R1).

So if R2 = 8.2 and R1 = 7.4 we have

I2 / I1 = 10^(R2 - R1) = 10^(8.2 - 7.4) = 10^.8 = 6.3 approx.

An earthquake with R = 8.2 is about 6.3 times as intense as an earthquake with R = 7.4. **

*********************************************

Question: `q4. I2 / I1 ratios

If one earthquake as an R value 1.6 higher than another, what is the ratio I2 / I1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

EQ with r value 1.6 higher than another is 40 times worse

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** As before I2 / I1 = 10^(R2-R1). If R2 is 1.6 greater than R1 we have R2 - R1 = 1.6 and

I2 / I1 = 10^1.6 = 40 approx.

An earthquake with R value 1.6 higher than another is 40 times as intense. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

Assignment 17

#$&*

course Mth 163

17 Query*********************************************

Question: `qquery Logarithms, Logarithmic Functions, Logarithmic Equations

1. For what value of x will the function y = log{base 2}(x) first reach 4

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

4=log(base2)(x) or 2^4=x which would mean x=16

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

*********************************************

Question: `qfor what value of x will the function y = ln(x) first reach y = 4?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X=e^4 x=55

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`ay = ln(x) means that e^y = x. The function y = ln(x) will first reach y = 4 when x = e^4 = 54.6 approx. **

ln(x) = 4 translates to x = e^4, which occurs at x = 55 approx.

ln(x) = 2 translates to x = e^2, which occurs at x = 7.4 approx.

(x) = 3 translates to x = e^3, which occurs at x = 20 approx. **

*********************************************

Question: `q3. Explain why the negative y axis is an asymptote for a log{base b}(x) function explain why this is so only if b > 1

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Large negative values of x lead to positive b^x values close to zero, which cause horizontal asymptotes on the negative x axis

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** the log{base b} function is the inverse of the y = b^x function. Assuming b > 1, large negative values of x lead to

positive b^x values near zero, resulting in a horizontal asymptotes along the negative x axis.

When the columns are reversed we end up with small positive values of x associated with large negative y, resulting in a

vertical asymptote along the negative y axis.

You can take a negative power of any positive b, greater than 1 or not.

For b > 1, larger negative powers make the result smaller, and the negative x axis is an asymptote for the function y = b^x.

For b < 1, larger positive powers make the result smaller, and the positive x axis becomes the asymptote. **

*********************************************

Question: `q5. What are your estimates for the values of b for the two exponential functions on the given graph?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A=1 a*b=3.5

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** The exponential function y = A b^x has y intercept (0, A) and basic point (1, A * b).

Both graphs pass thru (0, 1) so A = 1.

The x = 1 points are (1, 3.5) and (1, 7.3) approx.. Thus for the first A * b = 3.5; since A = 1 we have b = 3.5. For the

second we similarly conclude that b = 7.3.

So the functions are y = 3.5^x and y = 7.3^x, approx.. **

*********************************************

Question: `qAt what points will each of the logarithmic functions reach the values y = 2, y = 3 and y = 4?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3.5 and 7.3

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** Using trial and error we find that for y = 3.5^x, the x values .55, .88 and 1.11 give us y = 2, 3 and 4.

We find that for y = 7.3^x, the x values .35, .55 and .70 give us y = 2, 3 and 4. **

*********************************************

Question: `q7. What is the decibel level of a sound which is 10,000 times as loud as hearing threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Db=10 log(1/10)=10 10*4=40

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`adB = 10 log(I / I0). If the sound is 10,000 times as loud as hearing threshold intensity then I / I0 = 10,000.

log(10,000) = 4, since 10^4 = 10,000.

So dB = 10 log(I / I0) = 10 * 4 = 40.

*********************************************

Question: `qWhat are the decibel levels of sounds which are 100, 10,000,000 and 1,000,000,000 times louder than threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Log(100)=20 db log(10000000)=70 db log(1000000000)=90db

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a10 log(100) = 10 * 2 = 20, so a sound which is 100 times hearing threshold intensity is a 20 dB sound.

10 log(10,000,000) = 10 * 7 = 70, so a sound which is 100 times hearing threshold intensity is a 70 dB sound.

10 log(1,000,000,000) = 10 * 9 = 90, so a sound which is 100 times hearing threshold intensity is a 90 dB sound.

*********************************************

Question: `qhow can you easily find these decibel levels without using a calculator?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The log of a number is equal to thwe number of 0s that are present.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aSince 10^1, 10^2, 10^3, ... are 10, 100, 1000, ..., the power of 10 is the number of zeros in the result. Since the log

of a number is the power to which 10 must be raised to get this number, the log of one of these numbers is equal to the

number of zeros.

*********************************************

Question: `qWhat are the decibel levels of sounds which are 500, 30,000,000 and 7,000,000,000 times louder than threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Log(500)=27 db log(30000000)=75 db log(7000000000)=98.5 db

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a10 log(500) = 10 * 2.699 = 26.99 so this is a 26.99 dB sound.

10 log(30,000,000) = 10 * 7.477 = 74.77 so this is a 74.77 dB sound.

10 log(7,000,000,000) = 10 * 9.845 = 98.45 so this is a 98.45 dB sound.

*********************************************

Question: `q8. If a sound measures 40 decibels, then what is the intensity of the sound, as a multiple of the hearing threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

10000

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** Let x be the ratio I / I0. Then we solve the equation 40= 10*log(x). You solve this by dividing by 10 to get

log(x) = 4 then translating this to exponential form

x = 10^4 = 10,000.

The sound is 10,000 times the hearing threshold intensity, so

I = 10,000 I0. **

*********************************************

Question: `qAnswer the same question for sounds measuring 20, 50, 80 and 100 decibels.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

20=100 50=100 000 80=100 000 000 100=10 000 000 000

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** since dB = 10 log(I / I0) we have

log(I/I0) = dB / 10. Translating to exponential form this tells us that

I / I0 = 10^(dB/10) wo that

I = I0 * 10^(dB/10).

For a 20 dB sound this gives us

I = I0 * 10^(20/10) = I0 * 10^2 = 100 I0. The sound is 100 times the intensity of the hearing threshold sound.

For a 50 dB sound this gives us

I = I0 * 10^(50/10) = I0 * 10^5 = 100,000 I0. The sound is 100,000 times the intensity of the hearing threshold sound.

For an 80 dB sound this gives us

}I = I0 * 10^(80/10) = I0 * 10^8 = 100,000,000 I0. The sound is 100,000,000 times the intensity of the hearing

threshold sound.

For a 100 dB sound this gives us

I = I0 * 10^(100/10) = I0 * 10^10 = 10,000,000,000 I0. The sound is 10,000,000,000 times the intensity of the

hearing threshold sound. **

*********************************************

Question: `qWhat equation you would solve to find the intensity for decibel levels of 35, 83 and 117 dB.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

35=10 log(1/10)

83=10 log(1/10)

117 = 10 log(1/10)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** the equation to find I is dB = 10 log(I / I0) so the equations would be

35 = 10 log(I / I0)

83 = 10 log(I / I0)

117 = 10 log(I / I0).

The solution for I in the equation dB = 10 log(I / I0) is

I = I0 * 10^(dB/10). For the given values we would get solutions

10^(35/10) I0 = 3162.3 I0

10^(83/10) I0 = 199526231.5 I0

10^(117/10) I0 = 501187233627 I0 **

*********************************************

Question: `q9. is log(x^y) = x log(y) valid? If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No because it should be y log instead of x log

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log(a^b) = b log a so log(x^y) should be y log (x), not x log(y). **

*********************************************

Question: `qis log(x/y) = log(x) - log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes because of the exponential law

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aYes , this is valid. It is the inverse of the exponential law a^x / a^y = a^(x-y).

*********************************************

Question: `qis log (x * y) = log(x) * log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No it should be log(x) + log(y)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x * y) = log(x) + log(y)

*********************************************

Question: `qis 2 log(x) = log(2x) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No should be log(x^2)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log(a^b) = b log a so 2 log(x) = log(x^2), not log(2x). **

*********************************************

Question: `qis log(x + y) = log(x) + log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No should be equal to log(xy)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log(x) + log(y) = log(xy), not log(x+y). **

*********************************************

Question: `qis log(x) + log(y) = log(xy) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes. Law of exponents

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aThis is value. It is inverse to the law of exponents a^x*a^y = a^(x+y)

*********************************************

Question: `qis log(x^y) = (log(x)) ^ y valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x^y)=y log(x)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x^y) = y log (x).

This is the invers of the law (x^a)^b = x^(ab)

*********************************************

Question: `qis log(x - y) = log(x) - log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x-y)=logx/logy

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x-y) = log x/ log y

*********************************************

Question: `qis 3 log(x) = log(x^3) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aYes. log(x^a) = a log(x).

*********************************************

Question: `qis log(x^y) = y + log(x) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x^y)=y log(x)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x^y) = y log(x).

*********************************************

Question: `qis log(x/y) = log(x) / log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x/y)=log x- log y

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x/y) = log(x) - log(y).

*********************************************

Question: `qis log(x^y) = y log(x) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

yes

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aThis is valid.

*********************************************

Question: `q10. what do you get when you simplify log {base 8} (1024)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

10/3

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aCOMMON ERROR: log {base 8} (1024) = Log (1024) / Log (8) = 3.33333

EXPLANATION:

log {base 8} (1024) = Log (1024) / Log (8) is correct, but 3.33333 is not an exact answer.

log {base 8 } (1024) = log {base 8 } (2^10).

Since 8 = 2^3, 2^10 = 2^(3 * 10/3) = (2^3)^(10/3) = 8^(10/3).

Thus log {base 8} 1024 = log{base 8} 8^(10/3) = 10/3.

Note that 10/3 is not exactly equal to 3.33333. You need to give exact answers where possible.

*********************************************

Question: `qwhat do you get when you simplify log {base 2} (4 * 32)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

7

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log{base 2}(4*32) = log{bse 2}(2^2 * 2^5) = log{base 2}(2^7) = 7. **

*********************************************

Question: `qwhat do you get when you simplify log (1000)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3 because there are 3 0s

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aSince 10^3 = 1000, we have log (1000) = 3

*********************************************

Question: `qwhat do you get when you simplify ln(3xy)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

In(3)+in(x)+in(y)+1.0986

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a ln(3xy) = ln (3) + ln(x) + ln(y) = 1.0986 + ln(x) + ln(y)

*********************************************

Question: `qwhat do you get when you simplify log(3) + log(7) + log(41)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This is not a coherent number power of 10

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a log(3) + log(7) + log(41) = log (3*7*41). 3 * 7 * 41 is not a rational-number power of 10 so this can't be evaluated

exactly.

*********************************************

Question: `q11. Show how you used the given values to find the logarithm of 12. Explain why the given values don't help much if you want the log of 17.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I didn’t understand this

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

0

.............................................

Given Solution:

`a** The problem was as follows: Given that log(2) = .301, log(3) = .477, log(5) = .699, log(7) = .845, find log(4),

log(6), log(8), and log(9). Use the given values to find the logarithm of every possible integer between 11 and 20.

To get log(12), given the logs of 2, 3, 5 and 7, you have to break 12 down into a product of these numbers.

Since 12 = 2 * 2 * 3 we have

log(12) = log(2) + log(2) + log(3) = .301 + .301 + .477 = 1.079.

Your calculator will confirm this result. **

*********************************************

Question: `q12. What do you get when you solve 3 ^ (2x) = 7 ^ (x-4), and how did you solve the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-31

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a ** log[3^(2x)]= log [7^(x-4)]. Using the laws of logarithms we get

2xlog(3)= (x-4) log(7). The distributive law gives us

2xlog(3)= xlog(7)- 4log(7). Rearranging to get all x terms on one side we get

2xlog(3)- xlog(7)= -4log(7). Factor x out of the left-hand side to get

x ( 2 log(3) - log(7) ) = -4 log(7) so that

x = -4 log(7) / [ 2 log(3) - log(7) ].

Evaluating this we get x = -31, approx. **

*********************************************

Question: `qWhat do you get when you solve 2^(3x) + 2^(4x) = 9, and how did you solve the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I don’t think this can be solved to find x

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`aCOMMON ERROR: 3xlog(2) + 4xlog(2) = 9

Explanation:

Your equation would require that log( 2^(3x) + 2^(4x) ) = log(2^(3x) ) + log(2^(4x)).

This isn't the case. log(a + b) is not equal to log(a) + log(b). log(a) + log(b) = log(a * b), not log(a + b).

If this step was valid you would have a good solution.

However it turns out that this equation cannot be solved exactly for x. The best we can do is certain sophisticated forms

of trial and error. **

*********************************************

Question: `qWhat do you get when you solve 3^(2x-1) * 3^(3x+2) = 12, and how did you solve the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

.2524

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** 3^(2x-1) * 3^(3x+2) = 12. Take log of both sides:

log{3} [3^(2x-1) * 3^(3x+2)] = log{3} 12. Use log(a*b) = log(a) + log(b):

log{3}(3^(2x-1)) + log{3}(3^(3x+2) = log{3} 12. Use laws of logs:

(2x-1) + (3x+2) = log{3} 12. Rearrange the left-hand side:

5x + 1 = log{3}12. Subtract 1 from both sides then divide both sides by 5:

x = (log {3}(12) -1)/ 5. Use the fact that log{b}(x) = log x / (log b) to get

x = (log(12) / log(3) - 1) / 5. Evaluate using calculator:

x = .2524 **

*********************************************

Question: `qquery fitting exponential functions to data

1. what is the exponential function of form A (2^(k t) ) such that the graph passes thru points (-4,3) and (7,2), and what equations did you solve to obtain your result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=a*2^(kx)

K=-.053

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** Recall when we substituted the coordinates of three points into the form y = a x^2 + b x + c of a quadratic, then solved the resulting system of three linear equations to get the values of a, b and c. We do something similar here, but this time the form is y = A * 2^(kx). Our two unknowns will be A and k, and we will only require two equations to solve for our two unknowns. We therefore need only two points.

Substituting data points into the form y = A * 2^(kx) we get

3 = A * 2^(-4k) (from the data point (-4,3)) and

2 = A * 2^( 7k) (from the data point (7,2)).

When we solved the three equations for the quadratic model, we added multiples of equations in order to eliminate variables. However adding multiples of equations doesn't work here. What does work is dividing one equation by another, which eliminates the variable A.

Dividing the first equation by the second we get

3/2 = A * 2^(-4k) / (A * 2^(7k) ), which simplifies to

1.5 = 2^(-4k)/ 2^(7k).

Now by the laws of exponents 2^(-4k)/ 2^(7k) = 2^(-4-7k)= 2^(-11 k), so that

log(2^(-11 k)) = log(1.5) and

-11 k * log(2) = log 1.5. We solve this for k, obtaining

k = log(1.5) / (-11 log(2)).

Evaluating with a calculator we find that k = -.053, approx..

Just as we did when solving for the quadratic model, once we have evaluated an unknown we substitute that value into our original equations.

Our first equation was 3 = A * 2^(-4k), which is easily solve for A to give us

A = 3 / (2 ^(-4k) ).

Substituting k = -.053 we get

A= 3/ 1.158 = 2.591.

Now we know the values of both A and k, which we substitute into our form y = A * 2^(kx) to obtain our model

y = 2.591(2^-.053t). **

*********************************************

Question: `qwhat is the exponential function of form A e^(k2 t) such that the graph passes thru points thru points (-4,3) and (7,2) and how did you solve the equations to find this function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=2.591(e^-.039t)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** Substituting data points into the form y = A * e^(kx) we get

3= A * e^(-4k) and

2= A * e^(7k)

Dividing the first equation by the second we get

1.5= e^(-4k)/ e^(7k)= e^(-4-7k)= 2^(-11k)

so that

ln(e^(-11k)) = ln(1.5) and

-11 k = 1.5 so that

k= ln(1.5) / (-11). Evaluating with a calculator:

k= -.037 approx.

From the first equation

A = 3 / (e ^(-4k) ). Substituting k = -.037 we get

A= 3/ 1.158 = 2.591.

So our form y = A * e^(kx) gives us

y= 2.591(e^-.039 t). **

*********************************************

Question: `qwhat is the exponential function of form A b^t such that the graph passes thru points thru points(-4,3) and (7,2).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=2.549*.96^t

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** Our equations are

3= Ab^-4

2= Ab^7

3/2= Ab^-4/(Ab^7)

1.5= b^-11

b= .96

3= A * .96 ^ -4

3= A * 1.177

2.549= A

y= 2.549 * .96^t **

*********************************************

Question: `q2. Find the exponential function corresponding to the points (5,3) and (10,2).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=4.5*.922^t

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** Using y = A b^t we get equations

3= Ab^5

2= Ab^10

Dividing first by second:

3/2= Ab^5/(Ab^10).

1.5= b^-5

b= .922

Now A = 3 / b^5 = 3 / .922^5 = 4.5.

Our model is

y = 4.5 * .922^t. **

*********************************************

Question: `qWhat are k1 and k2 such that b = e^k2 = 2^k1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-.117

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** .922 = e^k2 is directly solved by taking the natural log of both sides to get

k2 = ln(.922) = -.081.

.922= 2^k1 is solved as follows:

log(.922) = log(2) k1

k1 = log(.922) / log(2) = -.117 approx..

Using these values for k1 and k2 we get

}g(x) = A * 2^(k1 t) = 4.5 * 2^(-.117 t) and

h(x) = A e^(k2 t) = 4.5 e^(-.081 t). ****

*********************************************

Question: `q3. earthquakes measure R1 = 7.4 and R2 = 8.2.

What is the ratio I2 / I1 of intensity and how did you find it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

R2=8.2 and R1=7.4 that would mean that an earthquake with R= 8.2 is about 6.3 times as intense as an earthquake with R=7.4

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** R1 = log(I1 / I0) and R2 = log(I2 / I0) so

I1/I0 = 10^R1 and I1 = 10^R1 * I0 and

I2/I0 = 10^R2 and I2 = 10^R2 * I0 so

I2 / I1 = (I0 * 10^R2) / (I0 * 10^R1) = 10^R2 / 10^R1 = 10^(R2-R1).

So if R2 = 8.2 and R1 = 7.4 we have

I2 / I1 = 10^(R2 - R1) = 10^(8.2 - 7.4) = 10^.8 = 6.3 approx.

An earthquake with R = 8.2 is about 6.3 times as intense as an earthquake with R = 7.4. **

*********************************************

Question: `q4. I2 / I1 ratios

If one earthquake as an R value 1.6 higher than another, what is the ratio I2 / I1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

EQ with r value 1.6 higher than another is 40 times worse

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** As before I2 / I1 = 10^(R2-R1). If R2 is 1.6 greater than R1 we have R2 - R1 = 1.6 and

I2 / I1 = 10^1.6 = 40 approx.

An earthquake with R value 1.6 higher than another is 40 times as intense. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!

Assignment 17

#$&*

course Mth 163

17 Query*********************************************

Question: `qquery Logarithms, Logarithmic Functions, Logarithmic Equations

1. For what value of x will the function y = log{base 2}(x) first reach 4

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

4=log(base2)(x) or 2^4=x which would mean x=16

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

*********************************************

Question: `qfor what value of x will the function y = ln(x) first reach y = 4?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X=e^4 x=55

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`ay = ln(x) means that e^y = x. The function y = ln(x) will first reach y = 4 when x = e^4 = 54.6 approx. **

ln(x) = 4 translates to x = e^4, which occurs at x = 55 approx.

ln(x) = 2 translates to x = e^2, which occurs at x = 7.4 approx.

(x) = 3 translates to x = e^3, which occurs at x = 20 approx. **

*********************************************

Question: `q3. Explain why the negative y axis is an asymptote for a log{base b}(x) function explain why this is so only if b > 1

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Large negative values of x lead to positive b^x values close to zero, which cause horizontal asymptotes on the negative x axis

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** the log{base b} function is the inverse of the y = b^x function. Assuming b > 1, large negative values of x lead to

positive b^x values near zero, resulting in a horizontal asymptotes along the negative x axis.

When the columns are reversed we end up with small positive values of x associated with large negative y, resulting in a

vertical asymptote along the negative y axis.

You can take a negative power of any positive b, greater than 1 or not.

For b > 1, larger negative powers make the result smaller, and the negative x axis is an asymptote for the function y = b^x.

For b < 1, larger positive powers make the result smaller, and the positive x axis becomes the asymptote. **

*********************************************

Question: `q5. What are your estimates for the values of b for the two exponential functions on the given graph?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A=1 a*b=3.5

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** The exponential function y = A b^x has y intercept (0, A) and basic point (1, A * b).

Both graphs pass thru (0, 1) so A = 1.

The x = 1 points are (1, 3.5) and (1, 7.3) approx.. Thus for the first A * b = 3.5; since A = 1 we have b = 3.5. For the

second we similarly conclude that b = 7.3.

So the functions are y = 3.5^x and y = 7.3^x, approx.. **

*********************************************

Question: `qAt what points will each of the logarithmic functions reach the values y = 2, y = 3 and y = 4?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3.5 and 7.3

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** Using trial and error we find that for y = 3.5^x, the x values .55, .88 and 1.11 give us y = 2, 3 and 4.

We find that for y = 7.3^x, the x values .35, .55 and .70 give us y = 2, 3 and 4. **

*********************************************

Question: `q7. What is the decibel level of a sound which is 10,000 times as loud as hearing threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Db=10 log(1/10)=10 10*4=40

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`adB = 10 log(I / I0). If the sound is 10,000 times as loud as hearing threshold intensity then I / I0 = 10,000.

log(10,000) = 4, since 10^4 = 10,000.

So dB = 10 log(I / I0) = 10 * 4 = 40.

*********************************************

Question: `qWhat are the decibel levels of sounds which are 100, 10,000,000 and 1,000,000,000 times louder than threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Log(100)=20 db log(10000000)=70 db log(1000000000)=90db

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a10 log(100) = 10 * 2 = 20, so a sound which is 100 times hearing threshold intensity is a 20 dB sound.

10 log(10,000,000) = 10 * 7 = 70, so a sound which is 100 times hearing threshold intensity is a 70 dB sound.

10 log(1,000,000,000) = 10 * 9 = 90, so a sound which is 100 times hearing threshold intensity is a 90 dB sound.

*********************************************

Question: `qhow can you easily find these decibel levels without using a calculator?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The log of a number is equal to thwe number of 0s that are present.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aSince 10^1, 10^2, 10^3, ... are 10, 100, 1000, ..., the power of 10 is the number of zeros in the result. Since the log

of a number is the power to which 10 must be raised to get this number, the log of one of these numbers is equal to the

number of zeros.

*********************************************

Question: `qWhat are the decibel levels of sounds which are 500, 30,000,000 and 7,000,000,000 times louder than threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Log(500)=27 db log(30000000)=75 db log(7000000000)=98.5 db

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a10 log(500) = 10 * 2.699 = 26.99 so this is a 26.99 dB sound.

10 log(30,000,000) = 10 * 7.477 = 74.77 so this is a 74.77 dB sound.

10 log(7,000,000,000) = 10 * 9.845 = 98.45 so this is a 98.45 dB sound.

*********************************************

Question: `q8. If a sound measures 40 decibels, then what is the intensity of the sound, as a multiple of the hearing threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

10000

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** Let x be the ratio I / I0. Then we solve the equation 40= 10*log(x). You solve this by dividing by 10 to get

log(x) = 4 then translating this to exponential form

x = 10^4 = 10,000.

The sound is 10,000 times the hearing threshold intensity, so

I = 10,000 I0. **

*********************************************

Question: `qAnswer the same question for sounds measuring 20, 50, 80 and 100 decibels.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

20=100 50=100 000 80=100 000 000 100=10 000 000 000

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** since dB = 10 log(I / I0) we have

log(I/I0) = dB / 10. Translating to exponential form this tells us that

I / I0 = 10^(dB/10) wo that

I = I0 * 10^(dB/10).

For a 20 dB sound this gives us

I = I0 * 10^(20/10) = I0 * 10^2 = 100 I0. The sound is 100 times the intensity of the hearing threshold sound.

For a 50 dB sound this gives us

I = I0 * 10^(50/10) = I0 * 10^5 = 100,000 I0. The sound is 100,000 times the intensity of the hearing threshold sound.

For an 80 dB sound this gives us

}I = I0 * 10^(80/10) = I0 * 10^8 = 100,000,000 I0. The sound is 100,000,000 times the intensity of the hearing

threshold sound.

For a 100 dB sound this gives us

I = I0 * 10^(100/10) = I0 * 10^10 = 10,000,000,000 I0. The sound is 10,000,000,000 times the intensity of the

hearing threshold sound. **

*********************************************

Question: `qWhat equation you would solve to find the intensity for decibel levels of 35, 83 and 117 dB.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

35=10 log(1/10)

83=10 log(1/10)

117 = 10 log(1/10)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** the equation to find I is dB = 10 log(I / I0) so the equations would be

35 = 10 log(I / I0)

83 = 10 log(I / I0)

117 = 10 log(I / I0).

The solution for I in the equation dB = 10 log(I / I0) is

I = I0 * 10^(dB/10). For the given values we would get solutions

10^(35/10) I0 = 3162.3 I0

10^(83/10) I0 = 199526231.5 I0

10^(117/10) I0 = 501187233627 I0 **

*********************************************

Question: `q9. is log(x^y) = x log(y) valid? If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No because it should be y log instead of x log

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log(a^b) = b log a so log(x^y) should be y log (x), not x log(y). **

*********************************************

Question: `qis log(x/y) = log(x) - log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes because of the exponential law

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aYes , this is valid. It is the inverse of the exponential law a^x / a^y = a^(x-y).

*********************************************

Question: `qis log (x * y) = log(x) * log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No it should be log(x) + log(y)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x * y) = log(x) + log(y)

*********************************************

Question: `qis 2 log(x) = log(2x) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No should be log(x^2)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log(a^b) = b log a so 2 log(x) = log(x^2), not log(2x). **

*********************************************

Question: `qis log(x + y) = log(x) + log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No should be equal to log(xy)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log(x) + log(y) = log(xy), not log(x+y). **

*********************************************

Question: `qis log(x) + log(y) = log(xy) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes. Law of exponents

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aThis is value. It is inverse to the law of exponents a^x*a^y = a^(x+y)

*********************************************

Question: `qis log(x^y) = (log(x)) ^ y valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x^y)=y log(x)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x^y) = y log (x).

This is the invers of the law (x^a)^b = x^(ab)

*********************************************

Question: `qis log(x - y) = log(x) - log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x-y)=logx/logy

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x-y) = log x/ log y

*********************************************

Question: `qis 3 log(x) = log(x^3) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aYes. log(x^a) = a log(x).

*********************************************

Question: `qis log(x^y) = y + log(x) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x^y)=y log(x)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x^y) = y log(x).

*********************************************

Question: `qis log(x/y) = log(x) / log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x/y)=log x- log y

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x/y) = log(x) - log(y).

*********************************************

Question: `qis log(x^y) = y log(x) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

yes

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aThis is valid.

*********************************************

Question: `q10. what do you get when you simplify log {base 8} (1024)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

10/3

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aCOMMON ERROR: log {base 8} (1024) = Log (1024) / Log (8) = 3.33333

EXPLANATION:

log {base 8} (1024) = Log (1024) / Log (8) is correct, but 3.33333 is not an exact answer.

log {base 8 } (1024) = log {base 8 } (2^10).

Since 8 = 2^3, 2^10 = 2^(3 * 10/3) = (2^3)^(10/3) = 8^(10/3).

Thus log {base 8} 1024 = log{base 8} 8^(10/3) = 10/3.

Note that 10/3 is not exactly equal to 3.33333. You need to give exact answers where possible.

*********************************************

Question: `qwhat do you get when you simplify log {base 2} (4 * 32)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

7

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log{base 2}(4*32) = log{bse 2}(2^2 * 2^5) = log{base 2}(2^7) = 7. **

*********************************************

Question: `qwhat do you get when you simplify log (1000)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3 because there are 3 0s

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aSince 10^3 = 1000, we have log (1000) = 3

*********************************************

Question: `qwhat do you get when you simplify ln(3xy)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

In(3)+in(x)+in(y)+1.0986

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a ln(3xy) = ln (3) + ln(x) + ln(y) = 1.0986 + ln(x) + ln(y)

*********************************************

Question: `qwhat do you get when you simplify log(3) + log(7) + log(41)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This is not a coherent number power of 10

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a log(3) + log(7) + log(41) = log (3*7*41). 3 * 7 * 41 is not a rational-number power of 10 so this can't be evaluated

exactly.

*********************************************

Question: `q11. Show how you used the given values to find the logarithm of 12. Explain why the given values don't help much if you want the log of 17.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I didn’t understand this

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

0

.............................................

Given Solution:

`a** The problem was as follows: Given that log(2) = .301, log(3) = .477, log(5) = .699, log(7) = .845, find log(4),

log(6), log(8), and log(9). Use the given values to find the logarithm of every possible integer between 11 and 20.

To get log(12), given the logs of 2, 3, 5 and 7, you have to break 12 down into a product of these numbers.

Since 12 = 2 * 2 * 3 we have

log(12) = log(2) + log(2) + log(3) = .301 + .301 + .477 = 1.079.

Your calculator will confirm this result. **

*********************************************

Question: `q12. What do you get when you solve 3 ^ (2x) = 7 ^ (x-4), and how did you solve the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-31

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a ** log[3^(2x)]= log [7^(x-4)]. Using the laws of logarithms we get

2xlog(3)= (x-4) log(7). The distributive law gives us

2xlog(3)= xlog(7)- 4log(7). Rearranging to get all x terms on one side we get

2xlog(3)- xlog(7)= -4log(7). Factor x out of the left-hand side to get

x ( 2 log(3) - log(7) ) = -4 log(7) so that

x = -4 log(7) / [ 2 log(3) - log(7) ].

Evaluating this we get x = -31, approx. **

*********************************************

Question: `qWhat do you get when you solve 2^(3x) + 2^(4x) = 9, and how did you solve the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I don’t think this can be solved to find x

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`aCOMMON ERROR: 3xlog(2) + 4xlog(2) = 9

Explanation:

Your equation would require that log( 2^(3x) + 2^(4x) ) = log(2^(3x) ) + log(2^(4x)).

This isn't the case. log(a + b) is not equal to log(a) + log(b). log(a) + log(b) = log(a * b), not log(a + b).

If this step was valid you would have a good solution.

However it turns out that this equation cannot be solved exactly for x. The best we can do is certain sophisticated forms

of trial and error. **

*********************************************

Question: `qWhat do you get when you solve 3^(2x-1) * 3^(3x+2) = 12, and how did you solve the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

.2524

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** 3^(2x-1) * 3^(3x+2) = 12. Take log of both sides:

log{3} [3^(2x-1) * 3^(3x+2)] = log{3} 12. Use log(a*b) = log(a) + log(b):

log{3}(3^(2x-1)) + log{3}(3^(3x+2) = log{3} 12. Use laws of logs:

(2x-1) + (3x+2) = log{3} 12. Rearrange the left-hand side:

5x + 1 = log{3}12. Subtract 1 from both sides then divide both sides by 5:

x = (log {3}(12) -1)/ 5. Use the fact that log{b}(x) = log x / (log b) to get

x = (log(12) / log(3) - 1) / 5. Evaluate using calculator:

x = .2524 **

*********************************************

Question: `qquery fitting exponential functions to data

1. what is the exponential function of form A (2^(k t) ) such that the graph passes thru points (-4,3) and (7,2), and what equations did you solve to obtain your result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=a*2^(kx)

K=-.053

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** Recall when we substituted the coordinates of three points into the form y = a x^2 + b x + c of a quadratic, then solved the resulting system of three linear equations to get the values of a, b and c. We do something similar here, but this time the form is y = A * 2^(kx). Our two unknowns will be A and k, and we will only require two equations to solve for our two unknowns. We therefore need only two points.

Substituting data points into the form y = A * 2^(kx) we get

3 = A * 2^(-4k) (from the data point (-4,3)) and

2 = A * 2^( 7k) (from the data point (7,2)).

When we solved the three equations for the quadratic model, we added multiples of equations in order to eliminate variables. However adding multiples of equations doesn't work here. What does work is dividing one equation by another, which eliminates the variable A.

Dividing the first equation by the second we get

3/2 = A * 2^(-4k) / (A * 2^(7k) ), which simplifies to

1.5 = 2^(-4k)/ 2^(7k).

Now by the laws of exponents 2^(-4k)/ 2^(7k) = 2^(-4-7k)= 2^(-11 k), so that

log(2^(-11 k)) = log(1.5) and

-11 k * log(2) = log 1.5. We solve this for k, obtaining

k = log(1.5) / (-11 log(2)).

Evaluating with a calculator we find that k = -.053, approx..

Just as we did when solving for the quadratic model, once we have evaluated an unknown we substitute that value into our original equations.

Our first equation was 3 = A * 2^(-4k), which is easily solve for A to give us

A = 3 / (2 ^(-4k) ).

Substituting k = -.053 we get

A= 3/ 1.158 = 2.591.

Now we know the values of both A and k, which we substitute into our form y = A * 2^(kx) to obtain our model

y = 2.591(2^-.053t). **

*********************************************

Question: `qwhat is the exponential function of form A e^(k2 t) such that the graph passes thru points thru points (-4,3) and (7,2) and how did you solve the equations to find this function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=2.591(e^-.039t)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** Substituting data points into the form y = A * e^(kx) we get

3= A * e^(-4k) and

2= A * e^(7k)

Dividing the first equation by the second we get

1.5= e^(-4k)/ e^(7k)= e^(-4-7k)= 2^(-11k)

so that

ln(e^(-11k)) = ln(1.5) and

-11 k = 1.5 so that

k= ln(1.5) / (-11). Evaluating with a calculator:

k= -.037 approx.

From the first equation

A = 3 / (e ^(-4k) ). Substituting k = -.037 we get

A= 3/ 1.158 = 2.591.

So our form y = A * e^(kx) gives us

y= 2.591(e^-.039 t). **

*********************************************

Question: `qwhat is the exponential function of form A b^t such that the graph passes thru points thru points(-4,3) and (7,2).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=2.549*.96^t

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** Our equations are

3= Ab^-4

2= Ab^7

3/2= Ab^-4/(Ab^7)

1.5= b^-11

b= .96

3= A * .96 ^ -4

3= A * 1.177

2.549= A

y= 2.549 * .96^t **

*********************************************

Question: `q2. Find the exponential function corresponding to the points (5,3) and (10,2).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=4.5*.922^t

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** Using y = A b^t we get equations

3= Ab^5

2= Ab^10

Dividing first by second:

3/2= Ab^5/(Ab^10).

1.5= b^-5

b= .922

Now A = 3 / b^5 = 3 / .922^5 = 4.5.

Our model is

y = 4.5 * .922^t. **

*********************************************

Question: `qWhat are k1 and k2 such that b = e^k2 = 2^k1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-.117

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** .922 = e^k2 is directly solved by taking the natural log of both sides to get

k2 = ln(.922) = -.081.

.922= 2^k1 is solved as follows:

log(.922) = log(2) k1

k1 = log(.922) / log(2) = -.117 approx..

Using these values for k1 and k2 we get

}g(x) = A * 2^(k1 t) = 4.5 * 2^(-.117 t) and

h(x) = A e^(k2 t) = 4.5 e^(-.081 t). ****

*********************************************

Question: `q3. earthquakes measure R1 = 7.4 and R2 = 8.2.

What is the ratio I2 / I1 of intensity and how did you find it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

R2=8.2 and R1=7.4 that would mean that an earthquake with R= 8.2 is about 6.3 times as intense as an earthquake with R=7.4

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** R1 = log(I1 / I0) and R2 = log(I2 / I0) so

I1/I0 = 10^R1 and I1 = 10^R1 * I0 and

I2/I0 = 10^R2 and I2 = 10^R2 * I0 so

I2 / I1 = (I0 * 10^R2) / (I0 * 10^R1) = 10^R2 / 10^R1 = 10^(R2-R1).

So if R2 = 8.2 and R1 = 7.4 we have

I2 / I1 = 10^(R2 - R1) = 10^(8.2 - 7.4) = 10^.8 = 6.3 approx.

An earthquake with R = 8.2 is about 6.3 times as intense as an earthquake with R = 7.4. **

*********************************************

Question: `q4. I2 / I1 ratios

If one earthquake as an R value 1.6 higher than another, what is the ratio I2 / I1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

EQ with r value 1.6 higher than another is 40 times worse

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** As before I2 / I1 = 10^(R2-R1). If R2 is 1.6 greater than R1 we have R2 - R1 = 1.6 and

I2 / I1 = 10^1.6 = 40 approx.

An earthquake with R value 1.6 higher than another is 40 times as intense. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!#*&!

Assignment 17

#$&*

course Mth 163

17 Query*********************************************

Question: `qquery Logarithms, Logarithmic Functions, Logarithmic Equations

1. For what value of x will the function y = log{base 2}(x) first reach 4

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

4=log(base2)(x) or 2^4=x which would mean x=16

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

*********************************************

Question: `qfor what value of x will the function y = ln(x) first reach y = 4?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X=e^4 x=55

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`ay = ln(x) means that e^y = x. The function y = ln(x) will first reach y = 4 when x = e^4 = 54.6 approx. **

ln(x) = 4 translates to x = e^4, which occurs at x = 55 approx.

ln(x) = 2 translates to x = e^2, which occurs at x = 7.4 approx.

(x) = 3 translates to x = e^3, which occurs at x = 20 approx. **

*********************************************

Question: `q3. Explain why the negative y axis is an asymptote for a log{base b}(x) function explain why this is so only if b > 1

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Large negative values of x lead to positive b^x values close to zero, which cause horizontal asymptotes on the negative x axis

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** the log{base b} function is the inverse of the y = b^x function. Assuming b > 1, large negative values of x lead to

positive b^x values near zero, resulting in a horizontal asymptotes along the negative x axis.

When the columns are reversed we end up with small positive values of x associated with large negative y, resulting in a

vertical asymptote along the negative y axis.

You can take a negative power of any positive b, greater than 1 or not.

For b > 1, larger negative powers make the result smaller, and the negative x axis is an asymptote for the function y = b^x.

For b < 1, larger positive powers make the result smaller, and the positive x axis becomes the asymptote. **

*********************************************

Question: `q5. What are your estimates for the values of b for the two exponential functions on the given graph?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A=1 a*b=3.5

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** The exponential function y = A b^x has y intercept (0, A) and basic point (1, A * b).

Both graphs pass thru (0, 1) so A = 1.

The x = 1 points are (1, 3.5) and (1, 7.3) approx.. Thus for the first A * b = 3.5; since A = 1 we have b = 3.5. For the

second we similarly conclude that b = 7.3.

So the functions are y = 3.5^x and y = 7.3^x, approx.. **

*********************************************

Question: `qAt what points will each of the logarithmic functions reach the values y = 2, y = 3 and y = 4?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3.5 and 7.3

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** Using trial and error we find that for y = 3.5^x, the x values .55, .88 and 1.11 give us y = 2, 3 and 4.

We find that for y = 7.3^x, the x values .35, .55 and .70 give us y = 2, 3 and 4. **

*********************************************

Question: `q7. What is the decibel level of a sound which is 10,000 times as loud as hearing threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Db=10 log(1/10)=10 10*4=40

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`adB = 10 log(I / I0). If the sound is 10,000 times as loud as hearing threshold intensity then I / I0 = 10,000.

log(10,000) = 4, since 10^4 = 10,000.

So dB = 10 log(I / I0) = 10 * 4 = 40.

*********************************************

Question: `qWhat are the decibel levels of sounds which are 100, 10,000,000 and 1,000,000,000 times louder than threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Log(100)=20 db log(10000000)=70 db log(1000000000)=90db

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a10 log(100) = 10 * 2 = 20, so a sound which is 100 times hearing threshold intensity is a 20 dB sound.

10 log(10,000,000) = 10 * 7 = 70, so a sound which is 100 times hearing threshold intensity is a 70 dB sound.

10 log(1,000,000,000) = 10 * 9 = 90, so a sound which is 100 times hearing threshold intensity is a 90 dB sound.

*********************************************

Question: `qhow can you easily find these decibel levels without using a calculator?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The log of a number is equal to thwe number of 0s that are present.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aSince 10^1, 10^2, 10^3, ... are 10, 100, 1000, ..., the power of 10 is the number of zeros in the result. Since the log

of a number is the power to which 10 must be raised to get this number, the log of one of these numbers is equal to the

number of zeros.

*********************************************

Question: `qWhat are the decibel levels of sounds which are 500, 30,000,000 and 7,000,000,000 times louder than threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Log(500)=27 db log(30000000)=75 db log(7000000000)=98.5 db

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a10 log(500) = 10 * 2.699 = 26.99 so this is a 26.99 dB sound.

10 log(30,000,000) = 10 * 7.477 = 74.77 so this is a 74.77 dB sound.

10 log(7,000,000,000) = 10 * 9.845 = 98.45 so this is a 98.45 dB sound.

*********************************************

Question: `q8. If a sound measures 40 decibels, then what is the intensity of the sound, as a multiple of the hearing threshold intensity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

10000

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** Let x be the ratio I / I0. Then we solve the equation 40= 10*log(x). You solve this by dividing by 10 to get

log(x) = 4 then translating this to exponential form

x = 10^4 = 10,000.

The sound is 10,000 times the hearing threshold intensity, so

I = 10,000 I0. **

*********************************************

Question: `qAnswer the same question for sounds measuring 20, 50, 80 and 100 decibels.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

20=100 50=100 000 80=100 000 000 100=10 000 000 000

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** since dB = 10 log(I / I0) we have

log(I/I0) = dB / 10. Translating to exponential form this tells us that

I / I0 = 10^(dB/10) wo that

I = I0 * 10^(dB/10).

For a 20 dB sound this gives us

I = I0 * 10^(20/10) = I0 * 10^2 = 100 I0. The sound is 100 times the intensity of the hearing threshold sound.

For a 50 dB sound this gives us

I = I0 * 10^(50/10) = I0 * 10^5 = 100,000 I0. The sound is 100,000 times the intensity of the hearing threshold sound.

For an 80 dB sound this gives us

}I = I0 * 10^(80/10) = I0 * 10^8 = 100,000,000 I0. The sound is 100,000,000 times the intensity of the hearing

threshold sound.

For a 100 dB sound this gives us

I = I0 * 10^(100/10) = I0 * 10^10 = 10,000,000,000 I0. The sound is 10,000,000,000 times the intensity of the

hearing threshold sound. **

*********************************************

Question: `qWhat equation you would solve to find the intensity for decibel levels of 35, 83 and 117 dB.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

35=10 log(1/10)

83=10 log(1/10)

117 = 10 log(1/10)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** the equation to find I is dB = 10 log(I / I0) so the equations would be

35 = 10 log(I / I0)

83 = 10 log(I / I0)

117 = 10 log(I / I0).

The solution for I in the equation dB = 10 log(I / I0) is

I = I0 * 10^(dB/10). For the given values we would get solutions

10^(35/10) I0 = 3162.3 I0

10^(83/10) I0 = 199526231.5 I0

10^(117/10) I0 = 501187233627 I0 **

*********************************************

Question: `q9. is log(x^y) = x log(y) valid? If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No because it should be y log instead of x log

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log(a^b) = b log a so log(x^y) should be y log (x), not x log(y). **

*********************************************

Question: `qis log(x/y) = log(x) - log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes because of the exponential law

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aYes , this is valid. It is the inverse of the exponential law a^x / a^y = a^(x-y).

*********************************************

Question: `qis log (x * y) = log(x) * log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No it should be log(x) + log(y)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x * y) = log(x) + log(y)

*********************************************

Question: `qis 2 log(x) = log(2x) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No should be log(x^2)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log(a^b) = b log a so 2 log(x) = log(x^2), not log(2x). **

*********************************************

Question: `qis log(x + y) = log(x) + log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No should be equal to log(xy)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log(x) + log(y) = log(xy), not log(x+y). **

*********************************************

Question: `qis log(x) + log(y) = log(xy) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes. Law of exponents

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aThis is value. It is inverse to the law of exponents a^x*a^y = a^(x+y)

*********************************************

Question: `qis log(x^y) = (log(x)) ^ y valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x^y)=y log(x)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x^y) = y log (x).

This is the invers of the law (x^a)^b = x^(ab)

*********************************************

Question: `qis log(x - y) = log(x) - log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x-y)=logx/logy

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x-y) = log x/ log y

*********************************************

Question: `qis 3 log(x) = log(x^3) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aYes. log(x^a) = a log(x).

*********************************************

Question: `qis log(x^y) = y + log(x) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x^y)=y log(x)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x^y) = y log(x).

*********************************************

Question: `qis log(x/y) = log(x) / log(y) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

No, log(x/y)=log x- log y

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aNo. log(x/y) = log(x) - log(y).

*********************************************

Question: `qis log(x^y) = y log(x) valid. If so why, and if not why not?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

yes

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aThis is valid.

*********************************************

Question: `q10. what do you get when you simplify log {base 8} (1024)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

10/3

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aCOMMON ERROR: log {base 8} (1024) = Log (1024) / Log (8) = 3.33333

EXPLANATION:

log {base 8} (1024) = Log (1024) / Log (8) is correct, but 3.33333 is not an exact answer.

log {base 8 } (1024) = log {base 8 } (2^10).

Since 8 = 2^3, 2^10 = 2^(3 * 10/3) = (2^3)^(10/3) = 8^(10/3).

Thus log {base 8} 1024 = log{base 8} 8^(10/3) = 10/3.

Note that 10/3 is not exactly equal to 3.33333. You need to give exact answers where possible.

*********************************************

Question: `qwhat do you get when you simplify log {base 2} (4 * 32)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

7

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** log{base 2}(4*32) = log{bse 2}(2^2 * 2^5) = log{base 2}(2^7) = 7. **

*********************************************

Question: `qwhat do you get when you simplify log (1000)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3 because there are 3 0s

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`aSince 10^3 = 1000, we have log (1000) = 3

*********************************************

Question: `qwhat do you get when you simplify ln(3xy)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

In(3)+in(x)+in(y)+1.0986

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a ln(3xy) = ln (3) + ln(x) + ln(y) = 1.0986 + ln(x) + ln(y)

*********************************************

Question: `qwhat do you get when you simplify log(3) + log(7) + log(41)? If it can be evaluated exactly, what is the result and how did you get it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This is not a coherent number power of 10

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a log(3) + log(7) + log(41) = log (3*7*41). 3 * 7 * 41 is not a rational-number power of 10 so this can't be evaluated

exactly.

*********************************************

Question: `q11. Show how you used the given values to find the logarithm of 12. Explain why the given values don't help much if you want the log of 17.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I didn’t understand this

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

0

.............................................

Given Solution:

`a** The problem was as follows: Given that log(2) = .301, log(3) = .477, log(5) = .699, log(7) = .845, find log(4),

log(6), log(8), and log(9). Use the given values to find the logarithm of every possible integer between 11 and 20.

To get log(12), given the logs of 2, 3, 5 and 7, you have to break 12 down into a product of these numbers.

Since 12 = 2 * 2 * 3 we have

log(12) = log(2) + log(2) + log(3) = .301 + .301 + .477 = 1.079.

Your calculator will confirm this result. **

*********************************************

Question: `q12. What do you get when you solve 3 ^ (2x) = 7 ^ (x-4), and how did you solve the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-31

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a ** log[3^(2x)]= log [7^(x-4)]. Using the laws of logarithms we get

2xlog(3)= (x-4) log(7). The distributive law gives us

2xlog(3)= xlog(7)- 4log(7). Rearranging to get all x terms on one side we get

2xlog(3)- xlog(7)= -4log(7). Factor x out of the left-hand side to get

x ( 2 log(3) - log(7) ) = -4 log(7) so that

x = -4 log(7) / [ 2 log(3) - log(7) ].

Evaluating this we get x = -31, approx. **

*********************************************

Question: `qWhat do you get when you solve 2^(3x) + 2^(4x) = 9, and how did you solve the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I don’t think this can be solved to find x

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`aCOMMON ERROR: 3xlog(2) + 4xlog(2) = 9

Explanation:

Your equation would require that log( 2^(3x) + 2^(4x) ) = log(2^(3x) ) + log(2^(4x)).

This isn't the case. log(a + b) is not equal to log(a) + log(b). log(a) + log(b) = log(a * b), not log(a + b).

If this step was valid you would have a good solution.

However it turns out that this equation cannot be solved exactly for x. The best we can do is certain sophisticated forms

of trial and error. **

*********************************************

Question: `qWhat do you get when you solve 3^(2x-1) * 3^(3x+2) = 12, and how did you solve the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

.2524

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** 3^(2x-1) * 3^(3x+2) = 12. Take log of both sides:

log{3} [3^(2x-1) * 3^(3x+2)] = log{3} 12. Use log(a*b) = log(a) + log(b):

log{3}(3^(2x-1)) + log{3}(3^(3x+2) = log{3} 12. Use laws of logs:

(2x-1) + (3x+2) = log{3} 12. Rearrange the left-hand side:

5x + 1 = log{3}12. Subtract 1 from both sides then divide both sides by 5:

x = (log {3}(12) -1)/ 5. Use the fact that log{b}(x) = log x / (log b) to get

x = (log(12) / log(3) - 1) / 5. Evaluate using calculator:

x = .2524 **

*********************************************

Question: `qquery fitting exponential functions to data

1. what is the exponential function of form A (2^(k t) ) such that the graph passes thru points (-4,3) and (7,2), and what equations did you solve to obtain your result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=a*2^(kx)

K=-.053

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** Recall when we substituted the coordinates of three points into the form y = a x^2 + b x + c of a quadratic, then solved the resulting system of three linear equations to get the values of a, b and c. We do something similar here, but this time the form is y = A * 2^(kx). Our two unknowns will be A and k, and we will only require two equations to solve for our two unknowns. We therefore need only two points.

Substituting data points into the form y = A * 2^(kx) we get

3 = A * 2^(-4k) (from the data point (-4,3)) and

2 = A * 2^( 7k) (from the data point (7,2)).

When we solved the three equations for the quadratic model, we added multiples of equations in order to eliminate variables. However adding multiples of equations doesn't work here. What does work is dividing one equation by another, which eliminates the variable A.

Dividing the first equation by the second we get

3/2 = A * 2^(-4k) / (A * 2^(7k) ), which simplifies to

1.5 = 2^(-4k)/ 2^(7k).

Now by the laws of exponents 2^(-4k)/ 2^(7k) = 2^(-4-7k)= 2^(-11 k), so that

log(2^(-11 k)) = log(1.5) and

-11 k * log(2) = log 1.5. We solve this for k, obtaining

k = log(1.5) / (-11 log(2)).

Evaluating with a calculator we find that k = -.053, approx..

Just as we did when solving for the quadratic model, once we have evaluated an unknown we substitute that value into our original equations.

Our first equation was 3 = A * 2^(-4k), which is easily solve for A to give us

A = 3 / (2 ^(-4k) ).

Substituting k = -.053 we get

A= 3/ 1.158 = 2.591.

Now we know the values of both A and k, which we substitute into our form y = A * 2^(kx) to obtain our model

y = 2.591(2^-.053t). **

*********************************************

Question: `qwhat is the exponential function of form A e^(k2 t) such that the graph passes thru points thru points (-4,3) and (7,2) and how did you solve the equations to find this function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=2.591(e^-.039t)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** Substituting data points into the form y = A * e^(kx) we get

3= A * e^(-4k) and

2= A * e^(7k)

Dividing the first equation by the second we get

1.5= e^(-4k)/ e^(7k)= e^(-4-7k)= 2^(-11k)

so that

ln(e^(-11k)) = ln(1.5) and

-11 k = 1.5 so that

k= ln(1.5) / (-11). Evaluating with a calculator:

k= -.037 approx.

From the first equation

A = 3 / (e ^(-4k) ). Substituting k = -.037 we get

A= 3/ 1.158 = 2.591.

So our form y = A * e^(kx) gives us

y= 2.591(e^-.039 t). **

*********************************************

Question: `qwhat is the exponential function of form A b^t such that the graph passes thru points thru points(-4,3) and (7,2).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=2.549*.96^t

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** Our equations are

3= Ab^-4

2= Ab^7

3/2= Ab^-4/(Ab^7)

1.5= b^-11

b= .96

3= A * .96 ^ -4

3= A * 1.177

2.549= A

y= 2.549 * .96^t **

*********************************************

Question: `q2. Find the exponential function corresponding to the points (5,3) and (10,2).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=4.5*.922^t

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** Using y = A b^t we get equations

3= Ab^5

2= Ab^10

Dividing first by second:

3/2= Ab^5/(Ab^10).

1.5= b^-5

b= .922

Now A = 3 / b^5 = 3 / .922^5 = 4.5.

Our model is

y = 4.5 * .922^t. **

*********************************************

Question: `qWhat are k1 and k2 such that b = e^k2 = 2^k1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-.117

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

2

.............................................

Given Solution:

`a** .922 = e^k2 is directly solved by taking the natural log of both sides to get

k2 = ln(.922) = -.081.

.922= 2^k1 is solved as follows:

log(.922) = log(2) k1

k1 = log(.922) / log(2) = -.117 approx..

Using these values for k1 and k2 we get

}g(x) = A * 2^(k1 t) = 4.5 * 2^(-.117 t) and

h(x) = A e^(k2 t) = 4.5 e^(-.081 t). ****

*********************************************

Question: `q3. earthquakes measure R1 = 7.4 and R2 = 8.2.

What is the ratio I2 / I1 of intensity and how did you find it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

R2=8.2 and R1=7.4 that would mean that an earthquake with R= 8.2 is about 6.3 times as intense as an earthquake with R=7.4

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** R1 = log(I1 / I0) and R2 = log(I2 / I0) so

I1/I0 = 10^R1 and I1 = 10^R1 * I0 and

I2/I0 = 10^R2 and I2 = 10^R2 * I0 so

I2 / I1 = (I0 * 10^R2) / (I0 * 10^R1) = 10^R2 / 10^R1 = 10^(R2-R1).

So if R2 = 8.2 and R1 = 7.4 we have

I2 / I1 = 10^(R2 - R1) = 10^(8.2 - 7.4) = 10^.8 = 6.3 approx.

An earthquake with R = 8.2 is about 6.3 times as intense as an earthquake with R = 7.4. **

*********************************************

Question: `q4. I2 / I1 ratios

If one earthquake as an R value 1.6 higher than another, what is the ratio I2 / I1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

EQ with r value 1.6 higher than another is 40 times worse

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a** As before I2 / I1 = 10^(R2-R1). If R2 is 1.6 greater than R1 we have R2 - R1 = 1.6 and

I2 / I1 = 10^1.6 = 40 approx.

An earthquake with R value 1.6 higher than another is 40 times as intense. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!#*&!#*&!