Query 6

#$&*

course Mth 163

9/29 7. Sorry this is getting sent on the day due, I normally try to be early on getting my work in, but I have had a stomach bug. Thank you.

@&

Stomach bugs are no fun. I'm glad you're over it.

*@

006. `query 6 *********************************************

Question: `qQuery 4 basic function families

What are the four basic functions?

What are the generalized forms of the four basic functions?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The four basic functions and generalized forms are

linear y = x with general form y = mx+ b

quadratic y = x^2 with general form y = ax^2 +bx +c

exponential y = 2^x with general form y = A*2^kx + c

power y = x^p with general form y = A(x-h)^p +c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT RESPONSE:

Linear is y=mx+b

Quadratic is y=ax^2 + bx +c

Exponential is y= A*2^ (kx)+c

Power = A (x-h)^p+c

INSTRUCTOR COMMENTS:

These are the generalized forms. The basic functions are y = x, y = x^2, y = 2^x and y = x^p. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qFor a function f(x), what is the significance of the function A f(x-h) + k and how does its graph compare to that of f(x)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A causes the multiplication and to make y further from the x axis.

K causes the y to shift.

H is the x axis shift.

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT RESPONSE: A designates the x strectch factor while h affects a y shift & k affects an x shift

INSTRUCTOR COMMENTS:

k is the y shift for a simple enough reason -- if you add k to the y value it raises the graph by k units.

h is the x shift. The reason isn't quite as simple, but not that hard to understand. It's because when x is replaced by x - h the y values on the table shift 'forward' by h units.

A is a multiplier. When all y values are multiplied by A that moves them all A times as far from the x axis, which is what causes the stretch.

Thus A f(x-h) + k is obtained from f(x) by vertical stretch A, horizontal shift h and vertical shift k.

The two aren't the same, but of course they're closely related. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

A is vertical stretch, h is horizontal shift and k is vertical shift.

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `q query introduction to rates and slopes, problem 1 ave vel for function depth(t) = .02t^2 - 5t + 150

give the average rate of depth change with respect to clock time from t = 20 to t = 40

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Depth(20) = .02(20)^2 - 5(20) + 150

= 8 - 100 + 150

= 58

(20, 58)

Depth (40) = .02(40)^2 - 5 (40) + 150

= 32-200+150

= -18

(40, -18)

Average rate

-18 - 58 = -76

40-20 = 20

-76/20 = -3.8

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** depth(20) = .02(20^2) - 5(20) + 150 = 58

depth(40) = .02(40^2) - 5(40) + 150 = -18

change in depth = depth(40) - depth(20) = -18 - 58 = -76

change in clock time = 40 - 20 = 20.

Ave rate of depth change with respect to clock time = change in depth / change in clock time = -76 / 20 = -3.8 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is the average rate of depth change with respect to clock time from t = 60 to t = 80?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Depth(60) = -78

Depth(80) = -122

-122-78 = -200

80-60 = 20

Average rate = -10

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** depth(60) = .02(60^2) - 5(60) + 150 = -78

depth(80) = .02(80^2) - 5(80) + 150 = -122

change in depth = depth(80) - depth(60) = -122 - (-78) = -44

change in clock time = 40 - 20 = 20.

Ave rate of depth change with respect to clock time = change in depth / change in clock time = -44 / 20 = -2.2 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Mathematical error made. Needed to do -122 - (-78) = -44. Error corrected.

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qdescribe your graph of y = .02t^2 - 5t + 150

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The graph is a parabola with a vertex of (125, -162.5). The zeros are 215.15 and 34.85. Graph is downward.

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The graph is a parabola.

y = .02t^2 - 5t + 150 has vertex at x = -b / (2a) = -(-5) / (2 * .02) = 125, at which point y = .02 (125^2) - 5(125) + 150 = -162.5.

The graph opens upward, intercepting the x axis at about t = 35 and t = 215.

Up to t = 125 the graph is decreasing at a decreasing rate. That is, it's decreasing but the slopes, which are negative, are increasing toward 0.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

When I sketched my graph, I sketched it at (125, 162.5) instead of -162.5. I made a mistake on my sketch causing me to think it was downward. I have fixed this. This graph is an upward facing parabola decreasing and increasing toward 0.

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qdescribe the pattern to the depth change rates

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y = .02t^2 - 5t + 150

(0, depth(0)) = (0, 150)

(20, depth(20)) = (20, 58)

(40, depth(40)) = (40, -18)

(60, depth(60)) = (60, -78)

(80, depth(80)) = (80, -122)

(100, depth(100)) = (100, -150)

0-20 = -92/20 = -4.6

20-40 = -76/20 = -3.8

40-60 = -60/20 = -3

60-80 = -44/20 = -2.2

80-100 = -28/20 = -1.4

The pattern is that it changes by .8 each time for 20 second intervals.

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Rates are -3.8, -3 and -2.2 for the three intervals (20,40), (40,60) and (60,80).

For each interval of `dt = 20 the rate changes by +.8. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 2. ave rates at midpoint times

what is the average rate of depth change with respect to clock time for the 1-second time interval centered at the 50 sec midpoint?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

T = 49.5

t = 50.5

y = .02(50.5)^2 - 5(50.5) + 150 = -51.5

y = .02(49.5)^2 - 5(49.5) + 150 = -48.5

(-51.5 - (-48.5))/(50.5-49.5) = -3/1 = -3

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The 1-sec interval centered at t = 50 is 49.5 < t < 50.5.

For depth(t) = .02t^2 - 5t + 150 we have

ave rate = [depth(50.5) - depth(49.5)]/(50.5 - 49.5) = -3 / 1 = -3. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qwhat is the average rate of change with respect to clock time for the six-second time interval centered at the midpoint.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

t = 47 and t = 53 which is a 6 second interval of 50 which is midpoint.

(-59- (-41)) / (53-47) = -18/6 = -3

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The 6-sec interval centered at t = 50 is 47 < t < 53.

For depth(t) = .02t^2 - 5t + 150 we have ave rate = [depth(53) - depth(47)]/(53 - 47) = -18 / 6 = -3. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat did you observe about your two results?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Both had an average rate change of -3

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The two rates match each other, and they also match the average rate for the interval 40 < t < 60, which is also centered at t = 50.

For a quadratic function, and only for a quadratic function, the rate is the same for all intervals having the same midpoint. This is a property unique to quadratic functions. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 3. ave rates at midpt times for temperature function Temperature(t) = 75(2^(-.05t)) + 25.

What is the average rate of temperature change with respect to clock time for the 1-second time interval centered at the 50 sec midpoint?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

t = 49.5 and t = 50.5

Temperature = 75(2^(-.05(49.5)) + 25

= 75 ( 2^ (-2.475)) + 25

= 75 (.1798666975) + 25

= 38.49

Temperature = 75(2^(-.05(50.5)) + 25

= 75 (2^(-2.525)) +25

= 75 (.17373977748) + 25

= 38.03

(38.03-38.49)/50.5-49.5 = -.46/1 = -.46

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

f(50.5) = 38.03048331 deg

f(49.5) = 38.49000231 deg

The change is -0.4595190014 deg. The change in clock time is 1 second.

So the average rate is

• ave rate = change in temperature / change in clock time = -.4595 deg / (1 sec ) = -.4595 deg/sec.

STUDENT RESPONSE: .46 degrees/sec

INSTRUCTOR COMMENT: More precisely -.4595 deg/sec, and this does not agree exactly with the result for the 6-second interval.

Remember that you need to look at enough significant figures to see if there is a difference between apparently identical results.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I decided to round the numbers near the end to get -.46 but to be more precise, I could have extended the decimals in the answer to the equations.

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qwhat is the average rate of change for the six-second time interval centered at the midpoint.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

t = 47 and t = 53

Temp(47) = 75(2^(-.05(47)) + 25

= 75 (.19614602447) + 25

= 39.7109518356

Temp(53) = 75(2^(-.05(53)) + 25

= 36.9490058811

Ave rate = -2.76194595448 / 6 = -.46032

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE: .46 degrees/minute

INSTRUCTOR COMMENT:

The 1- and 6-second results might possibly be the same to two significant figures, but they aren't the same. Be sure to recalculate these according to my notes above and verify this for yourself.

The average rate for the 6-second interval is -.4603 deg/sec. It differs from the average rate -.4595 deg/min, calculated over the 1-second interval, by more than -.0008deg/sec.

This differs from the behavior of the quadratic. For a quadratic that the results for all intervals centered at the same point will all agree. This is not the case for the present function, which is exponential. Exact agreement is a characteristic of quadratic functions, and of no other type. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I have changed my problems in my notes to show that there is a difference between the 1 and 6 second interval.

------------------------------------------------

Self-critique Rating: ok

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#This looks good. Let me know if you have any questions. &#