Query 10

#$&*

course Mth 163

10/14 1214am

010. `query 10

*********************************************

Question: `qquery the family of linear functions, Problem 2.

Describe the graphs of y = A f(x) for A = -.3 and A = 1.3 and compare; explain the comparison.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The graph of y = -.3x would have points (-1, .3), (0, 0), and (1, -.3). The graph of y = 1.3x would have points (-1, -1.3) (0, 0), (1, 1.3). These graphs would be intersecting at point (0, 0).

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** For the basic linear function f(x) = x the A = -.3 graph is obtained by vertically stretching the y = x function by factor -.3, resulting in a straight line thru the origin with slope -.3, basic points (0,0) and (1, -.3), and

the A = 1.3 graph is obtained by vertically stretching the y = x function by factor 1.3, resulting in is a straight line thru the origin with slope 1.3, basic points (0,0) and (1, 1.3). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qdescribe the graphs of y = f(x) + c for c = .3 and c = -2.7 and compare; explain the comparison.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The graph of y = x + .3 would have points of (-1, -7), (0, .3), and (1, 1.3). The line passes the y axis at (0, .3). The graph of y = x - 2.7 would have points of (-1, -3.7), (0, -2.7), and (1, -1.7). The line passes through the y axis at (0, -2.7). The lines look to be parallel.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The graphs will have slopes identical to that of the original function, but their y intercepts will vary from -2.7 to .3. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 4. linear function y = f(x) = -1.77 x - 3.87

What are your symbolic expressions, using x1 and x2, for the corresponding y coordinates y1 and y2.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y = f(x) = -1.77x - 3.87

y1 = -1.77x1 - 3.87 and y2 = -1.77x2 - 3.87

rise = y2 - y1 = (-1.77x2 - 3.87) - (-1.77x1 - 3.87)

= -1.77 (x2 - x1)

Run = x2 - x1

Slope = (-1.77 (x2 - x1) ) / (x2 - x1)

= -1.77

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** y1 = f(x1) = -1.77 x1 - 3.87

y2 = f(x2) = -1.77 x2 - 3.87.

`dy = y2 - y1 = -1.77 x2 - 3.87 - ( -1.77 x1 - 3.87) = -1.77 x2 + 1.77 x1 - 3.87 + 3.87 = -1.77 ( x2 = x1).

Thus slope = `dy / `dx = -1.77 (x2 - x1) / (x2 - x1) = -1.77.

This is the slope of the straight line, showing that these symbolic calculations are consistent. **

STUDENT QUESTION

My question is how did you take -1.77 x2 + 1.77 x1 and get -1.77(x2 - x1)? I understand the x2-x1 but what happened to the 1.77?

INSTRUCTOR RESPONSE

This may be clearer if we work backwards:

-1.77 * (x2 - x1) = -1.77 * x2 - (-1.77 * x1) = -1.77 x2 + 1.77 x1, which is the same thing as 1.77 x1 - 1.77 x2.

-1.77 * (x2 - x1) was chosen as the form for the numerator, so we could easily divide it by x2 - x1.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I understand this completely.

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 5. graphs of families for y = mx + b.

Describe your graph of the family: m = 2, b varies from -3 to 3 by step 1.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

You would get the functions

y = 2x - 3

y = 2x -2

y = 2x -1

y = 2x + 0

y = 2x +1

y = 2x + 2

y = 2x + 3

The slope would pass through at 2 and would go through the y axis at -3, -2, -1, 0, 1, 2, 3.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The graphs will all have slope 2 and will pass thru the y axis between y = -3 and y = 3.

The family will consist of all such graphs. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 6. three basic points graph of y = .5 x + 1

what are your three basic points?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y intercept when x = 0

y = .5(0) + 1 = 1

(0, 1)

X intercept when y = 0 and (-b/m)

x = -1/.5 = -2

(-2, 0)

1 point unit to the right (1, b+m)

y = 1 + .5 = 1.5

(1, 1.5)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** This is of the form y = mx + b with b= 1. So the y intercept is (0, 1).

The point 1 unit to the right is (1, 1.5).

The x-intercept occurs when y = 0, which implies .5 x + 1 = 0 with solution x = -2, so the x-intercept is (-2, 0). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 6. three basic points graph of y = .5 x + 1

What are your three basic points?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This is the same problem as the last.

(0, 1)

(-2, 0)

(1, 1.5)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The y intercept occurs when x = 0, at which point we have y = .5 * 0 + 1 = 1. So one basic point is (0, 1).

The point 1 unit to the right of the y axis occurs at x = 1, where we get y = .5 * 1 + 1 = 1.5 to give us the second basic point (1, 1.5)

}The third point, which is not really necessary, is the x intercept, which occurs when y = 0. This gives us the equation 0 = .5 x + 1, with solution x = -2. So the third basic point is (-2, 0). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 7. simple pendulum force vs. displacement

What are your two points and what line do you get from the two points?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

I chose the points (.54, 2.0) and (.77, 2.9)

Force vs. distance is force = m * distance + b

.54 = m (2.0) + b

.77 = m (2.9) + b

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qSTUDENT RESPONSE: The two points are (1.1, .21) and (2.0, .54).

These points give us the two simultaneous equations

.21- m(1.1) + b

.54= m(2.0) +b.

If we solve for m and b we will get our y = mx + b form.

INSTRUCTOR COMMENT:

I believe those are data points. I doubt if the best-fit line goes exactly through two data points.

In the future you should use points on your sketched line, not data points. However, we'll see how the rest of your solution goes based on these points. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Not sure if I’m getting this correct based on the instructors comment.

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qwhat equation do you get from the slope and y-intercept?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(1) 2.0m + b = .54

-(1) 2.9m - b = -.77

2.0m = .54

2.9m = -.77

-.9m = -.23

m = .2555

2.0(.2555) + b = .54

.5111 + b = .54

b = .0289

equation is y = .2555x + .0289

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE: b= .21

m=.19

INSTRUCTOR COMMENT:

** b would be the y intercept, which is not .21 since y = .21 when x = 1.1 and the slope is nonzero.

If you solve the two equations above for m and b you obtain m = .367 and b = -.193.

This gives you equation y = mx + b or y = .367 x - .193. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Not sure if I did this right??????

@&

You've solved your equations correctly.

However the form of the equation would be

force = m * displacement + b

You put the force values in for the displacements, and the displacements for the forces.

Everything you've done since that substitution is correct, so you're following the procedure and doing everything accurately.

Just be careful to get the right numbers with the right variables.

*@

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qwhat is your linear regression model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I’m not sure what this is????

confidence rating #$&*: 0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Your linear regression model would be obtained using a graphing calculator or DERIVE. As a distance student you are not required to use these tools but you should be aware that they exist and you may need to use them in other courses. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I see now. Thanks.

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat force would be required to hold the pendulum 47 centimeters from its equilibrium position? what equation did you solve to obtain this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y = .25555x + .0289 when x = 47

Y = .25555(47) + .0289

Y = 12.03975

I used my equation from the points I chose.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** If your model is y = .367 x - .193, with y = force and x= number of cm from equilibrium, then we have x = 47 and we get

force = y = .367 * 47 - .193 = 17 approx. The force would be 17 force units. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhy would it not make sense to ask what force would be necessary to hold the pendulum 80 meters from its equilibrium position? what equation did you solve to obtain this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If you were to solve this I would use the equation I come up with which would be

Y = .25555(80) + .0289

= 20.4729

I am not sure if this would make sense because in the problem, none of the data points go above 8 meters like originally stated in the problem.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE: I used the equation f= .10*47+.21

and got the answer 15.41 which would be to much force to push or pull

INSTRUCTOR COMMENT:

** The problem is that you can't hold a pendulum further at a distance greater than its length from its equilibrium point--the string isn't long enough. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qHow far could you hold the pendulum from its equilibrium position using a string with a breaking strength of 25 pounds? what equation did you solve to obtain this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

25 = .25555x + .0289

24.9711 = .25555x

X = 97.71

I think the string would break before it got to 25 pounds.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Using the model y = .367 * x - .193 with y = force = 25 lbs we get the equation

25 = .367 x - .193, which we solve to obtain

x = 69 (approx.).

Note that this displacement is also unrealistic for this pendulum. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qWhat is the average rate of change associated with this model? Explain this average rate in common-sense terms.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The average rate would be the slope which is .25555 I think. I know you would do y2 - y1 / x2 - x1. But that is with two different equations. With just the one equation, it would be .25555 would be the slope and .0289 would be the y intercept.

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Using the model y = .367 * x - .193 with y = force and x = displacement from equilibrium we can use any two (x, y) points to get the rate of change. In all cases we will get rate of change = change in y / change in x = .367.

The change in y is the change in the force, while the change in x is the change in position. The rate of change therefore tells us how much the force changes per unit of change in position (e.g., the force increases by 15 pounds for every inch of displacement). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I don’t think I got this totally correct. I know the change in y / change in x will give you the average rate. Did I get this right or somewhat right?????

@&

Again everything follows correctly after your substitution. But the model won't agree with the model you would have obtained had you substituted correctly.

*@

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is the average slope associated with this model? Explain this average slope in common-sense terms.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The average slope would be the same as the average rate. The change in y / change in rate.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Using the model y = .367 * x - .193 with y = force and x = displacement from equilibrium the average slope is .367. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qAs you gradually pull the pendulum from a point 30 centimeters from its equilibrium position to a point 80 centimeters from its equilibrium position, what average force must you exert?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y = .25555(47) + .0289 = 12.03975

Y = .25555(80) + .0289 = 20.4729

12.03975 + 20.4729 = 32.51265/2 = 16.256325 lbs of force

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** if it was possible to pull the pendulum back this far and if the model applies you will get

Force at 30 cm: y = .367 * 30 - .193 = 10.8 approx. and

Force at 80 cm: y = .367 * 80 - .193 = 29 approx. so that

ave force between 30 cm and 80 cm is therefore

(10.8 + 29) / 2 = 20 approx.. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 8. flow range

What is the linear function range(time)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Horizontal range = m * t + b

80 = m(34) + b

20 = m (97) + b

34m + b = 80

-97m - b = -20

-63m = 60

M = -.95238

34(-.95238) + b = 80

-32.38092 + b = 80

B = 112.38092

range = -.95238t + 112.38092

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT RESPONSE: I obtained model one by drawing a line through the data points and picking two points on the line and finding the slope between them. I then substituted this value for m and used one of my data points on my line for the x and y value and solved for b. the line I got was range(t) = -.95t + 112.38.

y = -16/15x + 98

INSTRUCTOR COMMENT:

This looks like a good model.

According to the instructions it should however be expressed as range(time) = -16/15 * time + 98. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is the significance of the average rate of change? Explain this average rate in common-sense terms.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Average rate of change would be the change in range / change in time

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** the average rate of change is change in range / change in clock time. The average rate of change indicates the average rate at which range in cm is changing with respect to clock time in sec, i.e., the average number of cm / sec at which the range changes. Thus the average rate tells us how fast, on the average, the range changes. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is the average slope associated with this model? Explain this average slope in common-sense terms.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The average slope would be the average range of flow change.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** it's the average rate at which the range of the flow changes--the average rate at which the position of the end of the stream changes. It's the speed with which the point where the stream reaches the ground moves across the ground. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 9. If your total wealth at clock time t = 0 hours is $3956, and you earn $8/hour for the next 10 hours, then what is your total wealth function totalWealth( t ), where t is time in hours?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

10 = 8t + 3956

confidence rating #$&*: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Total wealth has to be expressed in terms of t. A graph of total wealth vs. t would have y intercept 3956, since that is the t = 0 value, and slope 8, since slope represents change in total wealth / change in t, i.e., the number of dollars per hour.

A graph with y-intercept b and slope m has equation y = m t + b. Thus we have

totalWealth(t) = 8 * t + 3956 . **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

This was a little tough for me. I understand this now. At first I didn’t understand why 10 wouldn’t be in there, but now I see the 8 slope shows the change in wealth/change in time, so the 10 is not necessary in this equation.

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qAt what clock time will your total wealth reach $4000? what equation did you solve to obtain this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

4000 = 8t + 3956

8t = 44

T = 5.5

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE:

To find the clock time when my total wealth will reach 4000 I solved the equation totalWealth(t) = 4000. The value I got when I solved for t was t = 5.5 hours.

4.4 hours needed to reach 4000 4000 = 10x + 3956

INSTRUCTOR COMMENT:

Almost right. You should solve 4000 = 8 x + 3956, obtaining 5.5 hours. This is equivalent to solving totalWealth(t) = 4000 = 8 t + 3956, which is the more meaningful form of the relationship. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is the meaning of the slope of your graph?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The slope is the change in hours/ change in rate

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

GOOD STUDENT RESPONSE: The slope of the graph shows the steady rate at which money is earned on an hourly basis. It shows a steady increase in wealth.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Ok. I was a little more technical about it, but this is understood.

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 10. Experience shows that when a certain widget is sold for $30, a certain store can expect to sell 200 widgets per week, while a selling price of $28 increases the number sold to 300.

What linear function numberSold(price) describes this situation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

NumberSold(price) = m * price + b

200 = m * 30 + b

300 = m * 28 + b

30m + b = 200

-28m - b = -300

2m = -100

M = -50

30(-50) + b = 200

-1500 + b = 200

B = 1700

Y = -50x + 1700

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qquery problem 10. Experience shows that when a certain widget is sold for $30, a certain store can expect to sell 200 widgets per week, while a selling price of $28 increases the number sold to 300.

What linear function numberSold(price) describes this situation?

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

NumberSold(price) = m * price + b

200 = m * 30 + b

300 = m * 28 + b

30m + b = 200

-28m - b = -300

2m = -100

M = -50

30(-50) + b = 200

-1500 + b = 200

B = 1700

Y = -50x + 1700

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qIf you make a graph of y = numberSold vs. x = price you have graph points (30, 200) and (28, 300). You need the equation of the straight line through these points.

You plug these coordinates into the form y = m x + b and solve for m and b. Or you can use another method. Whatever method you use you get y = -50 x + 1700.

Then to put this into the notation of the problem you write numberSold(price) instead of y and price instead of x.

You end up with the equation

numberSold(price) = -50 * price + 1700. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qIf the store must meet a quota by selling 220 units per week, what price should they set? what equation did you solve to obtain this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

200 = -50x +1700

-1500 = -50x

X = 30

$30 per unit needs to be the set price.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** If the variables are y and x, you know y so you can solve for x.

For the function numberSold(price) = -50 * price + 1700 you substitute 220 for numbersold(price) and solve for price.

You get the equation

220 = -50 * price + 1700

which you can solve to get

price = 30, approx. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qIf each widget costs the store $25, then how much total profit will be expected from selling prices of $28, $29 and $30? what equation did you solve to obtain this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y = -50(25) + 1700

= 450

Y = -50(28)+1700

= 300

Y = -50(29) + 1700

= 250

Y = -50(30) + 1700

= 200

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE:

If each widget costs the store $25, then they should expect to earn a profit of 300 dollars from a selling price of $28, 250 dollars from a price of $29 and 200 dollars from a price of $30. To find this I solved the equations numberSold(28); numberSold(29), and numberSold(30). Solving for y after putting the price values in for p.

They will sell 300, 250 and 200 widgets, respectively (found by solving the given equation).

To get the total profit you have to multiply the number of widgets by the profit per widget. At $28 the profit per widgit is $3 and the total profit is $3 * 300 = $900; at $30 the profit per widgit is $5 and 200 are sold for profit $1000; at $29 what happens? **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 11. quadratic function depth(t) = .01 t^2 - 2t + 100 representing water depth vs.

What is the equation of the straight line connecting the t = 20 point of the graph to the t = 60 point?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Depth(t) = .01 (20)^2 - 2(20) + 100

= 4 - 40 + 100

= 64

Depth(t) = .01 (60) ^2 - 2 (60) + 100

= 36 - 120 + 100

= 16

(20, 64) and (60, 16)

16 - 64 / 60 - 20 = -48/40 = -1.2

Y = -1.2t + b

64 = -1.2(20) + b

64 = -24 + b

88 = b

y = -1.2t + 88

(shew!! Haha)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The t = 20 point is (20,64) and the t = 60 point is (60, 16), so the slope is (-48 / 20) = -1.2.

This can be plugged into the form y = m t + b to get y = -1.2 t + b.

Then plugging in the x and y coordinates of either point you get b = 88.

y = -1.2 t + 88 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

This is a very long problem….but got it!

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 13. quadratic depth function y = depth(t) = .01 t^2 - 2t + 100.

What is `dy / `dt based on the two time values t = 30 sec and t = 40 sec.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Depth(t) = .01 (30)^2 - 2(30) + 100

= 49

Depth(t) = .01(40)^2 - 2 (40) + 100

= 36

(30, 49) (40, 36)

Dy / dt = 36-49 / 40-30 = -13/10 = -1.3

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** For t = 30 we have y = 49 and for t = 40 we have y = 36.

The slope between (30, 49) and (40,36) is (36 - 49) / (40 - 30) = -1.3.

This tells you that the depth is changing at an average rate of -1.3 cm / sec. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qwhat is `dy / `dt based on t = 30 sec and t = 31 sec.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Depth(t) = .01(30)^2 - 2(30) + 100

= 49

Depth(t) = .01 (31) ^2 - 2 (31) + 100

= 9.61 - 62 + 100

= 47.61

(30, 49) ( 31, 47.61)

Dy / dt = 47.61 - 49 / 31 - 30 = -1.39/1 = -1.39

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Based on t = 30 and t = 31 the value for `dy / `dt is -1.39, following the same steps as before **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qwhat is `dy / `dt based on t = 30 sec and t = 30.1 sec.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

.01(30)^2 - 2(30) + 100

= 49

.01 ( 30.1)^2 - 2 (30.1) + 100

= 9.0601 - 60.2 + 100

= 48.8601

(30, 49) (30.1, 48.8601)

Dy/ dt = 48.8601 - 49 / 30.1 - 30 = -.1399 / .1 = -1.399

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT RESPONSE: The value for 'dy / `dt based on t = 30 sec and t = 30.1 sec is -1.4

INSTRUCTOR COMMENT:

** Right if you round off the answer. However the answer shouldn't be rounded off. Since you are looking at a progression of numbers (-1.3, -1.39, and this one) and the differences in these numbers get smaller and smaller, you have to use a precision that will always show you the difference. Exact values are feasible here and shoud be used. I believe that this one comes out to -1.399. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat do you think you would get for `dy / `dt if you continued this process?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The first was -1.3 the next was -1.39 and the last was -1.399. This will keep getting more exact and still essentially equals - 1.4 approximately.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE: An even more and more accurate slope value. I don't think it would have to continue to decrease.

INSTRUCTOR COMMENT

**If you look at the sequence -1.3, -1.39, -1.399, ..., what do you think happens?

It should be apparent that the limiting value is -1.4 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat does the linear function tell you?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The linear function tells us that -1.4 is the average slope no matter what two coordinates are given.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The function tells you that at any clock time t the rate of depth change is given by the function .02 t - 2.

For t = 30, for example, this gives us .02 * 30 - 2 = -1.4, which is the rate we obtained from the sequence of calculations above. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 14. linear function y = f(x) = .37 x + 8.09

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qwhat are the first five terms of the basic sequence {f(n), n = 1, 2, 3, ...} for this function.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y = .37x + 8.09

y = .37(1) + 8.09

= 8.46

y = .37 (2) + 8.09

= 8.83

y = .37(3) + 8.09

= 9.2

y = .37(4) + 8.09

= 9.57

y = .37 (5) + 8.09

= 9.94

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The first five terms are 8.46, 8.83, 9.2, 9.57, and 9.94 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is the pattern of these numbers?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

They are going up by .37 each time. The same as the slope in this equation.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** These numbers increase by .37 at each interval. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qIf you didn't know the equation for the function, how would you go about finding the 100th member of the sequence? How can you tell your method is valid?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

You could find it by using the .37 difference of each of the first 5 terms, but I’m not sure how.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** You could find the 100th member by noting that you have 99 ‘jumps’ between the first number and the 100 th, each ‘jump’ being .37.

Multiplying 99 times .37 and then adding the result to the 'starting value' (8.46). STUDENT RESPONSE: simply put 100 as the x in the formula .37x +8.09

INSTRUCTOR COMMENT: That's what you do if you have the equation.

Given just the numbers you could find the 100th member by multiplying 99 times .37 and then adding the result to the first value 8.46. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

The only way I could think of was using the equation, but without using the equation, I wasn’t sure how. Now I understand that it takes 99 “jumps” to get to 100 from 1 and then multiply 99 with .37 then add the 8.46 starting value. This is understood completely now.

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qfor quadratic function y = g(x) = .01 x^2 - 2x + 100 what are the first five terms of the basic sequence {g(n), n = 1, 2, 3, ...}?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

.01(1)^2 - 2(1) + 100

= .01 - 2 + 100

= 98.01

.01(2)^2 - 2(2) + 100

= .04 - 4 + 100

= 96.04

.01(3)^2 - 2(3) + 100

= .09 - 6 + 100

= 94.09

.01(4)^2 - 2(4) + 100

= .16 - 8 + 100

= 92.16

.01(5)^2 - 2 (5) + 100

= .25 - 10 + 100

= 90.25

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** We have

g(1) = .01 * 1^2 - 2 * 1 + 100 = 98.01

g(2) = .01 * 2^2 - 2 * 2 + 100 = 96.04,

etc.

The first 5 terms are therefore {98.01, 96.04, 94.09, 92.16, 90.25}

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is the pattern of these numbers?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-1.97, -1.95, -1.93, -1.91

.02 change per each interval.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The changes in these numbers are -1.97, -1.95, -1.93, -1.91. With each interval of x, the change in y is .02 greater than for the previous interval. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qIf you didn't know the equation for the function, how would you go about finding the next three members of the sequence?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

You would go by the sequence of adding -.02 to each of the new intervals by starting with -1.91

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** According to the pattern established above, the next three changes are -1.89, -1.87, -1.85. This gives us

g(6) = g(5) - 1.89, g(7) = g(6) - 1.87, g(7) = g(6) - 1.85. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qHow can you verify that your method is valid?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

By putting the next three intervals which is 6 , 7, 8 into the equation. I’m not sure if there’s another way.

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** You can verify the result using the original formula; if you evaluate it at 5, 6 and 7 it should confirm your results.

That's the best answer that can be given at this point.

You should understand, though that even if you verified it for the first million terms, that wouldn't really prove it (who knows what might happen at the ten millionth term, or whatever). It turns out that to prove it would require calculus or the equivalent. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 15. The difference equation a(n+1) = a(n) + .4, a(1) = 5

If you substitute n = 1 into a(n+1) = a(n) + .4, how do you determine a(2)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a (n + 1) = a (n) + .4

n = 1 and a(1) = 5

a(1 + 1) = a(1) + .4

a(2) = a(1) + .4

a(2) = 5 + .4

a(2) = 5.4

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** You get a(1+1) = a(1) + .4, or

a(2) = a(1) + .4.

Knowing a(1) = 5 you get a(2) = 5.4. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `q If you substitute n = 2 into a(n+1) = a(n) + .4 how do you determine a(3)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

N = 2

a (2+1) = a(2) + .4

a(3) =a(2) + .4

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** You have to do the substitution.

You get a(2+1) = a(2) + .4, or since 2 + 1 = 3, a(3) = a(2) + .4

Then knowing a(2) = 5.4 you get a(3) = 5.4 + .4 = 5.8. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I didn’t realize we needed to use the previous problem to get the answer for this one. Now seeing this, I understand the substitution needed. I will correct my notes.

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qIf you substitute n = 3 into a(n+1) = a(n) + .4, how do you determine a(4)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a(3+1) = a(3) + .4

a(4) = a(3) + .4

a(4) = 5.4 + .4

a(4) = 6.2

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** We get a(4) = a(3) +.4 = 5.8 + .4 = 6.2 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is a(100)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Do 99 “jumps” of .4. 99*.4 = 39.6 then add 5 because a(1) = 5 so that equals 39.6 + 5 = 44.6

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** a(100) would be equal to a(1) plus 99 jumps of .4, or 5 + 99*.4 = 44.6. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 17. difference equation a(n+1) = a(n) + 2 n, a(1) = 4.

What is the pattern of the sequence?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A(n+1) = a(n) + 2n

I’m starting with n = 1 for the pattern just like the previous problems.

a(1 + 1) = a(1) + 2(1)

a(2) = a(1) + 2

a(2) = 4 + 2

a(2) = 6

a(2+1) = a(2) + 2(2)

a(3) = a(2) + 4

a(3) = 6 + 4

a(3) = 10

a(3 +1) = a(3) + 2(3)

a(4) = a(3) + 6

a(4) = 10 + 6

a(4) = 16

a(4+1) = a(4) + 2(4)

a(5) = 16 + 8

a(5) = 24

Pattern is 4, 6, 10, 16, 24

The pattern is that each interval is going up by 2, 4, 6, 8……

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** For n = 1 we have n+1 = 2 so that the equation

• a(n+1) = a(n) + 2 n

becomes

• a(2) = a(1) + 2 * 1

Since a(1) = 4 (this was given) we have

• a(2) = a(1) + 2 * 1 = 4 + 2 = 6.

Reasoning similarly, n = 2 gives us

• a(3) = a(2) + 2 * 2 = 6 + 4 = 10.

n = 3 gives us

• a(4) = a(3) + 2 * 3 = 10 + 6 = 16; etc.

The sequence is 4, 6, 10, 16, 24, 34, ... . **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat kind of function do you think a(n) is (e.g., linear, quadratic, exponential, etc.)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I think this would be a linear function. ?

confidence rating #$&*: 0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The differences of the sequence are 4, 6, 8, 10, 12, . . ..

The difference change by the same amount each time, which is a property of quadratic functions. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Quadratic function is when the difference changes by the same amount each time. I will note this.

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery the slope = slope equation

Explain the logic of the slope = slope equation (your may take a little time on this one)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The slope = slope equation shows the logic of the slope between any points. This is another way to show the slope of a problem by using substitution.

confidence rating #$&*: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The slope = slope equation sets the slope between two given points equal to the slope between one of those points and the variable point (x, y).

Since all three points lie on the same straight line, the slope between any two of the three points must be equal to the slope between any other pair. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I understand the logic behind it, it was just hard to get it out in words.

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 7. streamRange(t), 50 centimeters at t = 20 seconds, range changes by -10 centimeters over 5 seconds.

what is your function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

50 = m(20) + b

-10 = m(5) + b

20m + b = 50

-5m - b = 10

15m = 60

M = 4

20(4) + b = 50

80 + b = 50

B = -30

Y = 4t - 30

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The rate at which streamRange changes is change in streamRange / change in t = -10 cm / (5 sec) = -2 cm/s. This will be the slope m of the graph.

Since streamRange is 50 cm when t = 20 sec the point (20, 50) lies on the graph. So the graph passes through (20, 50) and has slope -2.

The function is therefore of the form y = m t + b with m = -2, and b such that 50 = -2 * 20 + b. Thus b = 90.

The function is therefore y = -2 t + 90, or using the meaningful name of the function

steamRange(t) = -2t + 90

You need to use function notation. y = f(x) = -2x + 90 would be OK, or just f(x) = -2x + 90. The point is that you need to give the funcion a name.

Another idea here is that we can use the 'word' streamRange to stand for the function. If you had 50 different functions and, for example, called them f1, f2, f3, ..., f50 you wouldn't remember which one was which so none of the function names would mean anything. If you call the function streamRange it has a meaning. Of course shorter words are sometimes preferable; just understand that function don't have to be confined to single letters and sometimes it's not a bad idea to make the names easily recognizable.

STUDENT RESPONSE:

y = -2x + 50

INSTRUCTOR COMMENT:

** At t = 20 sec this would give you y = -2 * 20 + 50 = 10. But y = 50 cm when t = 20 sec.

Slope is -10 cm / (5 sec) = -2 cm/s, so you have y = -2 t + b.

Plug in y = 50 cm and t = 20 sec and solve for b.

You get b = 90 cm.

The equation is y = -2 t + 90, or

streamRange(t) = -2t + 90. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I used the flow model to do this and realize I am wrong. Here is this fixed.

M = -10/5 = -2

50 = -2(20) + b

50 = -40 + b

90 = b

Equation would be y = -2t + 90

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qwhat is the clock time at which the stream range first falls to 12 centimeters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

12 = -2t + 90

-78 = -2t

T = 39

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Using the correct equation streamRange(t) = -2t + 90, you would set streamRange(t) = 12 and solve 12 = -2t + 90, obtaining t = 39 sec. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qquery problem 9. equation of the straight line through t = 5 sec and the t = 7 sec points of the quadratic function depth(t) = .01 t^2 - 2t + 100

What is the slope and what does it tell you about the depth function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

.01(5)^2 - 2(5) + 100

.25 - 10 + 100

90.25

.01(7)^2 - 2(7) + 100

.49 - 14 + 100

86.49

(5, 90.25) (7, 86.49)

86.49-90.25 / 7-5 = -3.76/2 = -1.88

Y = -1.88t + b

86.49 = -1.88(7) + b

86.49 = -13.16 + b

99.65 = b

Y = -1.88t + 99.29

The slope is -1.88

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** You have to get the whole equation. y = m t + b is now y = -1.88 t + b. You have to solve for b. Plug in the coordinates of the t = 7 point and find b.

You get 90.9 = -1.88 * 7 + b so b = 104, approximately. Find the correct value.

The equation will end up something like y = depth(t) = -1.88 t + 104. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I’m not sure what I did wrong. Do I have a mathematical error that I cannot find?

------------------------------------------------

Self-critique Rating:

@&

As indicated in the given solution, the 104 is very approximate and you are prompted to find the correct value (which you did).

Your work appears to be fully correct.

*@

*********************************************

Question: `qThe slope of the linear function is -1.88. This tells me that the depth is decreasing as the time is increasing at a rate of 1.88 cm per sec.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qHow closely does the linear function approximate the quadratic function at each of the given times?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The difference would be (using my function)

For y = -1.88t + 99.29 for t = 5, 6, 7 would be 89.89, 88.01, 86.13

For y = .01t^2 - 2t + 100 for t = 5, 6,7 would be 90.25, 88.36, 86.49

The difference would be -.36, -.35, -.36

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The deviations are for t = 3, 4, 5, 6, 7, & 8 as follows: .08, .03. 0. -.01, 0, .03. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Correct me if I am wrong?????

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qat what t value do we obtain the closest values?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The closest t value that I come up with was when t = 6

confidence rating #$&*: ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Not counting t= 5 and t = 7, which are 0, the next closest t value is t = 6, the deviation for this is -.01. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I think I have some mathematical errors. ????

@&

I missed your simple substitution error earlier.

You had

86.49 = -1.88(7) + b

86.49 = -13.16 + b

99.65 = b

Y = -1.88t + 99.29

You appear to have substituted 99.29 for b instead of the 99.65 you got from your equations. This throws you deviations off by the difference 99.65 - 99.29 = .36.

*@

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qOn which side of the t = 5 and t = 7 points is the linear approximation closer to the quadratic function? On which side does the quadratic function 'curve away' from the linear most rapidly?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

According to my math, it is showing that t = 5 and t = 7 are the same.

confidence rating #$&*: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** On the t = 4 side the approximation is closer. The quadratic function curves away on the positive x side. **

Query Add comments on any surprises or insights you experienced as a result of this assignment.

The slope = slope helped me out a lot. Learning that I can solve a linear in different ways was helpful.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

This was pretty neat showing different ways of solving a slope. I think I have some errors on the last few problems.

------------------------------------------------

Self-critique Rating:

ok

STUDENT COMMENT

I found the difference equation to be a bit challenge to comprehend (it seems it can get pretty complicated) but very

exciting as well. I'm still not entirely sure what uses it will have in the future, but it seems like an important concept to have

for future reference.

INSTRUCTOR RESPONSE

The difference equation is a way of specifying how a quantity changes, step by step.

There are numerous situations in which all was know is the initial value of a quantity and the rules for how it changes.

• For example when water flows from a hole in the bottom of a uniform cylinder, it is the depth of water that determines how fast it comes out.

• All we know, then, is the initial depth of the water and the rule for how quickly the depth changes.

• It turns out that we can approximate the behavior of the depth function using the difference equation y(n+1) = y(n) - k * sqrt(y(n)), where k is a constant number determined by the diameter of the cylinder.

If you continue your study of mathematics you will eventually get to the fourth semester of the standard calculus sequence, a course entitled 'Introduction to Ordinary Differential Equations'. Most second-semester calculus courses also include a briefer introduction to the subject.

Your exposure to difference equations in this course will be usefu helpful to you when you reach that point.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

ok

STUDENT COMMENT

I found the difference equation to be a bit challenge to comprehend (it seems it can get pretty complicated) but very

exciting as well. I'm still not entirely sure what uses it will have in the future, but it seems like an important concept to have

for future reference.

INSTRUCTOR RESPONSE

The difference equation is a way of specifying how a quantity changes, step by step.

There are numerous situations in which all was know is the initial value of a quantity and the rules for how it changes.

• For example when water flows from a hole in the bottom of a uniform cylinder, it is the depth of water that determines how fast it comes out.

• All we know, then, is the initial depth of the water and the rule for how quickly the depth changes.

• It turns out that we can approximate the behavior of the depth function using the difference equation y(n+1) = y(n) - k * sqrt(y(n)), where k is a constant number determined by the diameter of the cylinder.

If you continue your study of mathematics you will eventually get to the fourth semester of the standard calculus sequence, a course entitled 'Introduction to Ordinary Differential Equations'. Most second-semester calculus courses also include a briefer introduction to the subject.

Your exposure to difference equations in this course will be usefu helpful to you when you reach that point.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

@&

Excellent work, despite a couple of arithmetic errors.

Check my notes.

*@