.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 2. y ' + t y = 3 t YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y’ = 3 t - t y y’ = t (-y + 3) y’ / (-y + 3) = t int y’ / (-y + 3) = int t -ln (-y + 3) = t^2 / 2 + c_1 y = c_1 e^(t^2 / 2) + 3 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3. y ' - 4 y = sin(2 t) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Integrating factor = e ^ int -4 dt = e^ -4 t Multiply each side by integrating factor (e^ -4 t) y’ - (4 e^-4 t) y = (e ^ -4 t) sin(2t) Integrate both sides int [(e^ -4 t) y’ - (4 e^-4 t) y] = int [(e ^ -4 t) sin(2t) ] Reverse product rule states that the left side of the equation becomes the integrating factor multiplied by y. (e^-4 t) y = (- 1 / 10 e ^ -4 t) (cos(2t)) + sin(2t)) + c_1 y = - 1 / 10 cos (2t) - 1 / 5 sin(2t) + c_1 e^4 t
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 4. y ' + y = e^t, y (0) = 2 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y’ = e^t - y u(t) = e^t (e^t)y’ + (e^t)y = e^2 t multiply each side by u(t) e^t (dy(t) / dt) + (d / dt) e^t y(t) = e ^ 2 t (d / dt) (e^t y(t)) = e^2t int (d / dt) (e^t y(t)) = int e^2t integrate both sides e^t y(t) = e^2t / 2 + c_1 y(t) = e^t / 2 + c_1 e^-t divide each side by e^t this above is the general solution Use the initial conditions to solve for c_1 2 = 1 / 2 + c_1 c_1 = 3 / 2 The solution is: y(t) = 1 / 2 e^ -t (e ^ 2 t + 3) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 5. y ' + 3 y = 3 + 2 t + e^t, y(1) = e^2 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: p(t) = 3 P(t) = 3 t Multiply each side by P(t) e^(3t) y’ + 3 e^(3t) y = 3 e^(3t) + 2 e^(3t) t + e^(3t) e^t (e^(3t) y)’ = 3 int e^(3t) + 2 int e^(3t) t + int e^(4t) e^(3t) y = 3 e^(3t) + (e^(4t) / 4) + 2 / 9 e^(3t) (3 t - 1) + c e^(-3t) y = 3 + 2 / 9 e^(3t) (3 t - 1) + 1 / 4 e^(4t) This is the general solution. Plugging in y(1) = e^2 we have e^2 = c e^-3 + 4 / 9 e^3 + e / 4 + 3 c = -3 e^3 - e^4 / 4 + e^5 - 4 e^6 / 9
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I don’t believe I integrated properly. The algebra in finding c was difficult. ------------------------------------------------ Self-critique rating: ********************************************* Question: 6. The general solution to the equation y ' + p(t) y = g(t) is y = C e^(-t^2) + 1, t > 0. What are the functions p(t) and g(t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: From the general solution, P(t) is -t^2. p(t) is the derivative of P(t) so p(t) = -2t Working backwards from y = c e(^-t^2) + 1 we multiple each side by e^(t^2). e^(t^2)y’= e^(t^2) * (1) + C taking the dervative of each side gives us e^(t^2)y = 2te^(t^2) g(t) is the beginning of the right side of the equation or 2t. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!