#$&* course Mth 279 2/24 20 Section 2.4.*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 2. What annual rate of return is required if an investment of $1000 is to reach $3000 in 15 years? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A = P (1 + r)^ 15 3000 = 1000 (1 + r)^15 3 = (1 + r )^15 3 = 1 + r^15 2 = r^15 15th root 2 = r r = 1.047 4.7 percent annual return. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3. A bacteria colony has a constant growth rate. The population grows from 40 000 to 100 000 in 72 hours. How much longer will it take the population to grow to 200 000? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A = P e^( r t) 100000 = 40000 ^ (72 r) 100 = 40 e ^ (72 r) 2.5 = e^(72 r) log(2.5) = 72 r r = 0.0127 is the constant growth rate. Now we plug in 200 000 as the A value. 200 000 = 100 000 e ^ (0.0127 t) log (2) = 0.0127 t t = 54.6 hours.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 4. A population experiences growth rate k and migration rate M, meaning that when the population is P the rate at which new members are added is k P, but the rate at they enter or leave the population is M (positive M implies migration into the population, negative M implies migration out of the population). This results in the differential equation dP/dt = k P + M. Given initial condition P = P_0, solve this equation for the population function P(t). **** #$&* In terms of k and M, determine the minimum population required to achieve long-term growth. **** #$&* What migration rate is required to achieve a constant population? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: P’ = kP + M This is a separable equation. P’ / (kP + M ) = 1 int P / (kP + M ) = int 1 1 / k ln (k P + M) = t + c k P + M = e^(kc) e^(kt) = C e^(kt) The general solution is P(t) = (c / k) e^(kt) - M / k When t = 0 , P(0) = P_0 P_0 = (c / k) e^ 0 - M / k P_0 = c / k - M / k c = P_0 + M / k P(t) = [(k P_0) + M) / k ] e^(kt) - M / k P(t) = (P_0 - m / K) e^(kt) - M / k
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 5. Suppose that the migration in the preceding occurs all at once, annually, in such a way that at the end of the year, the population returns to the same level as that of the previous year. How many individuals migrate away each year? **** #$&* How does this compare to the migration rate required to achieve a steady population, as determined in the preceding question? **** #$&* YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I do not understand how to being or setup this problem.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!