#$&* course Mth 279 3 / 20 13 Query 12 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: For each of the equations and initial conditions below, find the largest t interval in which a solution is known to exist: y '' + y ' + 3 t y = tan(t), y(pi) = 1, y ' (pi) = -1 t y '' + sin(2 t) / (t^2 - 9) y ' + 2 y = 0, y(1) = 0, y ' (1) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The first function: tan(t) is continues except for multiples of pi / 2 The initial condition of t = pi falls between the interval of ( pi/ 2 , 3 pi / 2) The second function: divide each side of the function by t to isolate the y term and we have y + (sin( 2 t) / t (t^2 - 9)) y + ( 2 / t) y = 0 With t (t^2 - 9) we cannot have t = -3, 0 , 3 The intervals for the solution to exist are from (-infinty, -3) (-3, 0) (0, 3) and (3 , infinity) The initial condition is t = 1 so this falls under the interval of (0, 3) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Decide whether the solution of each of the following equations is increasing or decreasing, and whether each is concave up or concave down in the vicinity of the given initial point: y '' + y = - 2 t, y(0) = 1, y ' (0) = -1 y '' + y = - 2 t, y(0) = 1, y ' (0) = -1 y '' - y = t^2, y(0) = 1, y ' (0) = 1 y '' - y = - 2 cos(t), y (0) = 1, y ' (0) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y '' + y = - 2 t, y(0) = 1, y ' (0) = -1 Given initial point is (0,1) with slope (y) of -1 so function is decreasing y(0) = - y - 2(0) y(0) = - y , the function is concave down y '' - y = t^2, y(0) = 1, y ' (0) = 1 Given initial point is (0,1) with slope (y) of 1 so function is increasing y(0) = (0)^2 + y y = y , the function is positive so concave up y '' - y = - 2 cos(t), y (0) = 1, y ' (0) = 1. Given initial point of (0, 1) with slope (y) 1 the function is increasing. y(0) = y - 2 cos(0) y(0) = y - 2 = 1 - 2 = -1 With a negative y the function is concave down. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: