#$&* course Mth 279 3/20 15 Query 14 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Decide whether y_1 = e^(-t) and y_2 = 2 e^(1 - t) are solutions to the equation y '' + 2 y ' + y = 0. If so determine whether the two solutions are linearly independent. If the solutions are linearly independent then find the general solution, as well as a particular solution for which y (0) = 1 and y ' (0) = 0. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y_1(t) = e^-t y_1’(t) = -e^-t y_1’’(t) = e^ - t y’’ + 2 y’ + y = 0 e^-t - 2 e^-t + e^-t = 0 0 = 0 y_2(t) = 2e^(1-t) y_2’(t) = -2e^(1-t) y_2’’(t) = 2e^(1-t) y’’+2 y’ + y = 0 2e^(1-t) - 4 e^(1-t) + 2 e^(1 - t) = 0 0 = 0 Computing the wronksian W(t) = [f(t) g(t)] = f(t) g’(t) - g(t) f’(t) W(t) = (e^-t) (-2 e^(1-t)) - (2 e ^(1 - t) ) (-e^-t) = 0 W(t) = 0 Since wronksian = 0 , they are not a fundamental set and therefore linearly dependent. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Suppose y_1 and y_2 are solutions to the equation y '' + alpha y ' + beta y = 0 and that y_1 = e^(2 t). Suppose also that the Wronskian is e^(-t). What are the values of alpha and beta? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y_1(t) = e ^ (2 t) y_1’(t) = 2 e ^ (2 t) y_1’’(t) = 4 e ^ (2 t ) y’’ + A y’ + B y = - 4 e ^ (2 t) + A 2 e ^ (2t) + B e ^ (2 t) e^(2t) ( 4 + 2 A + B ) = 0 Equation 1: 4 + 2 A + B = 0 The wronksian = e^ -t W(t) = f(t) g’(t) + g(t) f’(t) e^ 2t y_2’(t) + y_2(t) 2 e^ ( 2 t) = e^ -t int [y_2(t)e^(2t)]’ = int [e^ -t]’ y_2(t) e^(2t) = -e^-t y_2(t) = -e^(-3t) y_2’(t) = 3 e^(-3t) y_2’’(t) = -9 e^(-3t) y’’ + Ay’ + By = 0 - 9 e^(-3t) + A 3 e^(-3t) + B e^(-3t) = 0 e^(-3t) (- 9 + 3 A - B) = - Equation 2: 3 A - B - 9 = 0 We can use Equation 1 and Equation 2 to solve for A Adding Equation 1 and Equation 2 together we have 2 A + B + 4 = 0 + 3A - B - 9 = 0 5 A - 5 = 0 A = 1 Plugging A = 1 into equation 1 we can solve for B 2A + B + 4 = 0 2(1) + B + 4 = 0 b = -6 So A = 1 and B = - 6
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: "