#$&* course Mth 279 3/23 15 Query 15 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Are y1 = 2 e^(-2 t) cos(t) and y2 = e^(-2 t) sin(t) solutions to the equation y '' + 4 y ' + 5 y = 0? What are the initial conditions at t = 0? Is {y1, y2} a fundamental set? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y1 = 2 e^(-2 t) cos(t) y1 = 2 e^(-2t) -sin(t) - 4e^(-2t) cos(t) y1 = e^(-2t) (-2 sin(t) - 4 cos(t)) The second derivative will be done in pieces d / dt e^(-2t) -sin(t) = e^(-2t) - cos(t) - 2 e^(-2t) - sin(t) = e^(-2t) (-cos(t) + 2 sin(t) This is eq. 1 d / dt - 2 e^(-2t) cos(t) = -2 e^(-2t) - sin(t) - 4 e^(-2t) cos(t) = e^(-2t) (2 sin(t) + 4 cos(t)) This is eq. 2 Adding eq. 1 and eq. 2 together we have y1 = 2 (3 cos(t) + 4 sin(t)) e^(-2t) y1 = e^(-2t) (6 cos(t) + 8 sin(t)) Now bringing y1, y1, and y1 into the follow equation: y + 4 y + 5 y = 0 The e^(-2t) term can be divided out so I will ignore it. 0 = 6 cos(t) + 8 sin(t) + 4(-2 sin(t) - 4 cos(t)) + 5(2 cos (t) 0 = 6 cos(t) + 8 sin(t) - 8 sin(t) - 16 cos(t) + 10 cos(t) 0 = 0 y1 is a solution to the equation. Now for the second equation y2 = e^(-2 t) sin(t) y2 = e^(-2 t) cos(t) - 2 e^(-2 t) sin(t) y2 = e^(-2 t) (cos(t) - 2 sin(t)) y2 = d / dt e^(-2 t) cos(t) - 2 e^(-2 t) sin(t)) d/ dt e^(-2 t) cos(t) = e^(-2 t) - sin(t) - 2 e^(-2 t) cos (t) eq 1 d / dt - 2 e^(-2 t) sin(t) 4 e^(-2 t) sin(t) - 2 e^(-2 t) cos(t) eq 2 Adding eq 1 and eq 2 back together we have y2 = e^(-2 t) (3 sin(t) - 4 cos(t)) Now bringing y1, y1, and y1 into the follow equation: y + 4 y + 5 y = 0 0 = e^(-2 t) (3 sin(t) - 4 cos(t)) + 4 (e^(-2 t) (cos(t) - 2 sin(t)) + 5(e^(-2 t) sin(t)) 0 = 3 sin(t) - 4 cos(t) + 4 cos(t) - 8 sin(t) + 5 sin(t) 0 = 0 y2 is a solution to the equation. Initial conditions at t = 0 : y1(0) = 2 e^0 cos (0) = 2 y1(0) = e^ 0 ( - 2 sin(0) - 4 cos(0)) = -4 y1(0) = e^0 (6 cos(0) + 8 sin(0)) - 6 y2(0) = e^ 0 ( sin(0)) = 0 y2(0) = e^ 0 (cos(0) - 2 sin(0)) = 1 y2(0) = e^ 0 ( 3 sin(0) - 4 cos(0)) = -4 If they are a fundamental set the wronksian will be a non-zero y1 = f(t) y2 = g(t) W(t) = f(t) g(t) - g(t) f(t) After a larrrrge amount of algebra this simplifies to 2 e^(-4t) which does not equal zero. This indicates it is a fundamental set. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: y1_bar = 2 y1 - 2 y2 and y2_bar = y1 - y2. Is {y1_bar, y2_bar} a fundamental set? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To find out, I will compute the wronksian. If the wronksian is equal to zero, it is not a fundamental set. W(t) = 2(y1 - y2)(y1-y2) - 2(y1-y2)(y1-y2) W(t) = 0 Not a fundamental set. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Note that y_1_bar = 2 * y_2_bar. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Is {e^t, 2 e^(-t), sinh (t) } a fundamental set on the interval (-infinity, infinity)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The wronksian is W(t) = [e^t , 2e^-t , sinh(t) ] This is a long process detailed below: (e^t)[(-2e^-t)(-sinh(t)0 - (2 e^-t)(cosh(t))] → Line 1 (-2 e^-t)[(e^t)(-sinh(t)) - (cosh(t)(e^t)] → Line 2 (sinh(t))[(e&t)(2e^-t) - (-2e^-t)(e^t)] → Line 3 W(t) = Line 1 - Line 2 + Line 3 Simplifying Line 1 we have: [(-2)(-sinh(t)) - (2)(cosh(t)] = 2 ( sinh(t) - cosh(t) ) Simplifying Line 2 we have: 2 (-sinh(t) - cosh(t)) = -2(sinh(t) + cosh(t)) Simplifying Line 3 we have: sinh(t)[2 + 2] = 4 sinh(t) Finally, the wronksian is Line 1 - Line 2 + Line 3 which equals 4(sinh(t) - cosh(t)) This does not equal zero so they are a fundamental set.