#$&* course Mth 279 3/23 15:30 Question: Find the general solution toy '' - 5 y ' + 2 y = 0
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the general solution to 8 y '' - 6 y ' + y = 0 and the unique solution for the initial conditions y (1) = 4, y ' (1) = 3/2. How does the solution behave as t -> infinity, and as t -> -infinity>? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: We can set up a characteristic equation of 8 r^2 - 6 r + 1 = 0 Using the quadratic formulas r equals r = - 6 ± [sqrt(36 - 4(8)(1)) / 16] r = ½ or ¼ The general solution is y = c1 e^(t / 2) + c2 e^(t / 4) y(1) = 4 y’(1) = 3 / 2 y(1) = c1 e^(1/2) + c2 e^(1/4) = 4 y’(1) = 1 / 2 c1 e^(1 / 2) + 1 / 4 c2 e^(1 / 4) = 3 / 2 Solving for c1 and c2 we have c1 = 2 / sqrt(e) c2 = 2 / 4throot(e) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Solve the equation m ( r '' - Omega^2 r) = - k r ' for r(0) = 0, r ' (0) = v_0. Omega is the angular velocity of a centrifuge, m is the mass of a particle and k is drag force constant. Physics students will recognize that m r Omega^2 is the centripetal force required to keep an object of mass m moving in a circle of radius r at angular velocity Omega. The equation models the motion of a particle at the axis which is given initial radial velocity v_0. The mass m of a particle is proportional to its volume, while the drag constant is proportional to its cross-sectional area. Assuming all particles are geometrically similar (and most likely spherical, though this is not necessary as long as they are geometrically similar, but for the sake of an accurate experiment spheres would be preferable), how then does k / m change as the diameter of particles increases? If Omega = 20 revolutions / minute and v_0 = 1 cm / second, with k / m = 4 s^-1, find r( 2 seconds ). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: m(r’’ - omega^2 r) = -k r’ m r’’ - m omega^2 r = - k r’ - m / k r’’ + m / k omega^2 r = r’ The general solution will be in the form C1 e^(lambda t) + c2 e^(lambda t) I am having trouble setting up the characteristic equation which would ostensibly supply two values for lambda, one positive and one negative. - m / k lambda^2 - lambda + m / k omega^2 = 0 If I divide out - m / k we have lambda^2 + k / m lambda - omega^2 = 0 Using the quadratic formula to solve for lambda we have x = - b ± [sqrt( b^2 - 4 a c) / 2 a] lambda = - k / m ± [sqrt( - k / m ^2 + 4 omega^2) / 2] The value of lambda is getting ‘messy’
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!