Query_17 

#$&*

course Mth 279

3/ 25 16

Query 17 Differential Equations*********************************************

Question: Solve the equation

25 y '' + 20 y ' + 4 y = 0, y(5) = 4 e^-2, y ' (5) = -3/5 e^-2

with y(5) = 4 e^-2 and y ' (5) = -3/5 e^-2.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

We can set up a characteristic equation of

25 r^2 + 20 r + 4 = 0

This can be simplified to

(5 r + 2)^2 = 0

r = - 2 / 5

The general solution is

y(t) = c1 e^(-2/5 t) + c2 e^(-2/5 t)

With initial conditions y(5) = 4 e^-2 and y’(5) = -3 / 4 e^ - 2

y(5) = c1 e^-2 + c2 e^-2 = 4 e^-2

y’(5) = -2 / 5 c1 e^-2 - 2 / 5 c2 e^-2

dividing the y(5) equation by e^-2 we have

c1 + c2 = 4

dividing the y’(5) equation by e^-2 and then multiplying both sides by 5 we have

-2 c1 - 2 c2 = -3

???? I cannot find a value to satisfy both equations, even when using woflram alpha….

I do not see where I went wrong above.

@&

You have a repeated root r = -2/5, giving you one solution e^(-2t/5 ) and another linearly independent solution. You used e^(-2/5 t) as your second solution, .but in fact c1 e^(-2/5 t) + c2 e^(-2.5 t) is just a single function (c1 + c2) e^(-2.5 t). (c1 + c2) is just a single arbitrary constant, since c1 and c2 are arbitrary in the first place.

Your second linearly independent solution would be t e^(-2t / 5).

Using these two solutions to the general equation, you will be able to satisfy the two initial conditions.

*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: Solve the equation

3 y '' + 2 sqrt(3) y ' + y = 0, y(0) = 2 sqrt(3), y ' (0) = 3

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The characteristic equation is

3 r^2 + 2 sqrt(3) r + 1 = 0

Using the quadratic equation r is a repeated solution

r = -sqrt(3) / 3

The fundamental set is

[ e^(-sqrt(3) / 3 t) , t e^(-sqrt(3) / 3 t)]

The general solution is

y(t) = c1 e^(-sqrt(3) / 3 t) + c2 t e^(-sqrt(3) / 3 t)

With initial conditions

y(0) = c1 = 2 sqrt(3)

y’(0) = - sqrt(3) / 3 c1 + c2 = 3

-6 + c2 = 3

c2 = 9

The solution is

y(t) = 2 sqrt(3) e^(-sqrt(3) / 3 t) + 9 t e^(-sqrt(3) / 3 t)

@&

The derivative of this expression, evaluated at t = 0, is 2 + 9 = 11, not 3.

c1 = 2 sqrt(3) so y ' (0) = 2 sqrt(3) * -sqrt(3) / 3 = -2. So you get

-2 + c1 = 3

giving you c1 = 5.

*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: Solve the equation

y '' - 2 cot(t) y ' + (1 + 2 cot^2 t) y = 0,

which has known solution y_1(t) = sin(t)

You will use reduction of order, find intervals of definition and interval(s) where the Wronskian is continuous and nonzero. See your text for a more complete statement of this problem.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y2(t) = y1(t) u(t)

y2(t) = sin(t) u(t)

(sin(t) u(t))’’ - 2 cot (t) (sin(t) u(t))’ + (1 + cot^2 t) (sin(t) u(t)) = 0

y’’ - 2 cot(t) y’ + (1 + 2 cot^2 t) y = sin(t) u(t)

u’’ = 0

u(t) = A1 t + A2

y2(t) = sin(t)(A1 t + A2)

y2(t) = A1 t sin(t) + A2 sin(t)

If we set A2 = 0 then

y2(t) = A1 t sin(t)

y(t) = A sin(t) + B t sin(t)

Computing the Wronksian to determine if y1 and y2 are a fundamental set

W(t) = [f(t) g(t)]

f(t) = sin(t)

f’(t) = cos(t)

g(t) = t sin(t)

g’(t) = sin(t) + t cos(t)

W(t) = f(t)g’(t) - g(t)f’(t)

W(t) = sin^2 (t) + t sin(t) cos (t) - t sin(t) cos(t) = sin^2 (t)

@&

It doesn't appear that you used the product rule to find the derivatives of y_2 = sin(t) u(t).

We begin by letting y_2(t) = u(t) * y_1(t), so that

y_2 ' = u ' * y_1 + u * y_1 ' = u ' sin(t) + u cos(t)

and

y_2 '' = u'' * y_1 + 2 u ' * y_1 ' + u y_1 ''

= u '' * sin(t) + 2 u ' * cos(t) - u * sin(t).

Our equation becomes

u'' * y_1 + 2 u ' * y_1 ' + u y_1 '' - 2 cot(t) (u ' * y_1 + u * y_1 ') + (1 + 2 cot^2(t)) * u y_1 = 0

which can be rearranged to yield

[ u y_1 '' - 2 cot(t) * u y_1 ' + (1 + 2 cot^2(t)) * u y_1 ] + u '' y_1 + u ' ( 2 y_1 - 2 cot(t) y_1) = 0.

The terms in brackets can be expressed as u ( y_1 '' - 2 cot(t) * y_1 ' +(1 + 2 cot(t)^2) y_1); since y_1 is a solution to our original equation these terms therefore add up to zero.

This leaves us with

u '' + 2 u ' y_1 (1 - cot(t)) = 0.

or substituting y_1 = sin(t)

u '' + 2 u ' sin(t) ( 1 - cot(t)) = 0.

cot(t) = cos(t) / sin(t), and our equation for u becomes

u '' + 2 (sin(t) - cos(t) ) u' = 0.

Letting v = u ' our equation is

v ' + 2 ( sin(t) - cos(t) ) v = 0.

This is a first-order linear equation, solvable for v. The solution is integrated to find u, and our solution is y = u * y_1 = u * sin(t).

&

*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

&#Good work. See my notes and let me know if you have questions. &#