#$&* course Mth 279 3/ 25 17 Query 18 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Question: The graph below represents position vs. clock time for a mass m oscillating on a spring with force constant k. The position function is y = R cos(omega t - delta). Find delta, omega and R. Give the initial conditions on the y and y '. Determine the mass and the force constant. Describe how you would achieve these initial conditions, given the appropriate mass and spring in front of you. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: These values will be approximate… The period of the graph is 2. So that omega = 2 pi / 2 or pi The amplitude of the graph is 3. An oscillating graph has the standard form of y = A sin (omega t + phi) or y = A cos (omega t + phi) This graph uses the cosine form. The graph appears to be shifted to the right about 1 / 4 of a unit. Playing with graphing programs online, this can be accounted for by changing the t term in the standard form to a (t - pi / 4)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: This problem isn't in your text, but is related to the first problem in this set, and to one of the problems that does appear in your text. Repeating the first problem: 'A 10 kg mass stretches a spring 30 mm beyond its unloaded position. The spring is pulled down to a position 70 mm below its unloaded position and released. Write and solve the differential equation for its motion.' Suppose that instead of simply releasing it from its 70 mm position, you deliver a sharp blow to get it moving at downward at 40 mm / second. What initial conditions apply to this situation? Apply the initial conditions to the general solution of the differential equation, and give the resulting function. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The sharp blow changes the initial condition which is now y(0) = -30 mm y’(0) = -40 mm / sec The previous equations are the same: y’’ = -k / m y y(t) = A cos (omega t) + B sin ( omega t) With omega = sqrt( k / m) y(0) = A cos (omega * 0) = -30 mm A = -30 mm y’(t) = - omega A sin (omega t) + omega B cos (omega t) y’(0) = omega B = -40 mm B = -2.3 mm The resulting function is : y(t) = -30 cos (18 t) - 2.3 sin (18 t) confidence rating #$&*:232; 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: The 32-pound weight at its equilibrium position in a critically-damped spring-and-dashpot system is given a 4 ft / sec downward initial velocity, and attains a maximum displacement of 6 inches from equilibrium. What are the values of the drag force constant gamma and the spring constant k? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: F_damp = - gamma y’ F_spring = - k y F_net = F_damp + F_spring F_net = - gamma y’ - k y Newtons Law: F = m a = m y’’ m y’’ = - gamma y’ - k y m y’’ + gamma y’ + k y = 0 y’’ + (gamma / m) y’ + (k / m) y = 0 This creates our characteristic equation: r^2 + (gamma / m) r + k / m = 0 Using the quadratic formula to solve for r: r = - gamma / m +- sqrt( (gamma^2 / m^2) - 4 k / m) / 2 Given: The spring is critically damped Critically damped means that gamma^2 / m^2 - 4 k / m = 0 Solving for gamma: gamma = sqrt( 4 km) = 2 sqrt(k m) This is positive due to context. Solving the quadratic formula for r r = - gamma / 2m = - 2 sqrt( km) / 2m r = - sqrt (k / m) From the previous problems, r is equal to omega The provides the fundamental set [ e ^ - omega t , t e ^ -omga t ] The general solution is y(t) = A e ^ ( - omega t) + B t e ^ ( - omega t) Initial condition of y(0) = 0 y(t) = A A = 0 y(t) = B t e ^ ( -omega t) Initial condition of y’(0) = -4 y’(t) = B e ^ (-omeag t) - B t omega e ^ (-omega t) y’(0) = B = -4 B = -4 y(t) = -4 t e ^ ( -omega t) y’(t) = -4 e ^ (-omega t) + 4 t omega e ^ (-omega t) ????? I am confused as where to go from here
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: The motion of a system is governed by the equation m y '' + gamma y ' + k y = 0, with y(0) = 0 and y ' (0) = v_0. Give the solutions which correspond to the critically damped, overdamped and underdamped cases. Show that as gamma approaches 2 sqrt(k * m) from above, the solution to the underdamped case approaches the solution to the critically damped case. Show that as gamma approaches 2 sqrt(k * m) from below, the solution to the overdamped case approaches the solution to the critically damped case. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: From the previous problem: r = (- gamma / m + sqrt( (gamma^2 / m^2) - 4 k / m ) ) / 2 When: gamma = 2 sqrt( k m ) → 0 , critically damped gamma < 2 sqrt ( k m ) → negative , overdamped gamma > 2 sqrt ( k m ) → positive , underdamped ????? Not sure if the above assumptions are correct or if this is where I should be heading witht this problem.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!