#$&* course Mth 279 3/31 13 Query 19 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the general solution of the equation y '' + y ' = 6 t^2 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Characteristic equation: r^2 + r = 0 r(r + 1) = 0 r = 0 , - 1 y_c(t) = A e^(r1 t) + B e^(r2 t) y_c(t) = A + B e^-t y_p(t) = A t^2 + Bt + C We need to go one higher power to yield a t^2 term y_p(t) = A t^3 + Bt^2 + Ct + D y_p’(t) = 3 A t^2 + 2 B t + C y_p’’(t) = 6 A t + 2 B Plugging y_p’(t) and y_p’’(t) into y’’ + y’ = 6 t^2 we have: 6 A t + 2 B + 3 A t^2 + 2 B t + C = 6 t^2 3 A t^2 + (6A + 2B) t + 2B + C = 6 t^2 3A = 6 6A + 2B = 0 2B + C = 0 A = 2 B = - 6 C = 12 y_p(t) = 2 t^3 -6 t^2 + 12 t + D = 0 The constant D is negligible since no y term (only y’ and y’’) appear in the equation. y(t) = y_c(t) + y_p(t) y(t) = A + B e^-t + 2 t^3 - 6 t^2 + 12 t confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the general solution of the equation y '' + y ' = cos(t). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The characteristic equation is r^2 + r = 0 r(r +1) = 0 r= 0 , -1 y_c(t) = A e^(r1 t) + B e^ -t y_c(t) = A + B e^-t We expect the particular equation to be in the form of: y_p(t) = C cos(t) + D sin(t) y_p’(t) = - C sin(t) + D cos(t) y_p’’(t) = - C cos(t) - D sin(t) - C cos(t) - D sin(t) - C sin(t) + D cos(t) = cos(t) (D - C) cos(t) + (-D - C) sin(t) = cos(t) D - C = 1 -D - C = 0 D = C + 1 -C - 1 - C = 0 2C = -1 C = - 1 / 2 D = 1 / 2 y_p(t) = - 1 / 2 cos(t) + 1 / 2 sin(t) y(t) = y_c(t) + y_p(t) y(t) = A + b e^-t - 1 / 2 cos(t) + 1 / 2 sin(t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Give the expected form of the particular solution to the given equation, but do not actually solve for the constants: y '' - 2 y ' + 3 y = 2 e^-t cos(t) + t^2 + t e^(3 t) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: USING METHOD OF UNDETERMINED COEFFICIENTS y’’ - 2 y’ + 3 y = 0 We can set up a characteristic equation using the above homogeneous equation. r^2 - 2r + 3 = 0 This gives two complex roots r1 and r2 in the form of r = alpha + beta i r1 = 1 + i sqrt(2) r2 = 1 - i sqrt(2) This gives our general solution in the form of: y(x) = c1 e^(alpha x) cos (beta x) + c2 e^(alpha x) sin(beta x) alpha = 1 beta = sqrt (2) First I will break down the 2 e^-t cos(t) term. Yp(x) = A e^-t sin(sqrt(2) ) + B e^-t cos(sqrt(2) x) Second, I will break down the t^2 term Yp(x) = C x^2 + D x + E With E = 0 in this case Last, I will break down the t e^(3t) term. Yp(x) = F t e^(3t) As this is duplicated in the initial equation, it needs to me multiplied by an additional factor of the independent variable (x). This leads to Yp(x) = F t^2 e^(3t) Adding these three above cases together we have: Yp(x) = A e^-t sin(sqrt(2) ) + B e^-t cos(sqrt(2) x) + C x^2 + D x + F t e^(3t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Give the expected form of the particular solution to the given equation, but do not actually solve for the constants: y '' + 4 y = 2 sin(t) + cosh(t) + cosh^2(t). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y’’ + 4 y = 0 r^2 + 4 = 0 r = +/- 2i alpha = 0 , beta = 2 y_c(x) = c1 e^(alpha x) cos(beta x) + c2 e^(alpha x) sin(beta x) y_c(x) = c1 cos(2x) + c2 sin(2x) The first term 2 sin(t) Yp(x) = A sin(t) * *The derivative will involve cos as well so Yp(x) = A sin(t) + B cos(t) The second term cosh(t)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: The equation y '' + alpha y ' + beta y = t + sin(t) has complementary solution y_C = c_1 cos(t) + c_2 sin(t) (i.e., this is the solution to the homogeneous equation). Find alpha and beta, and solve the equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The complementary equation has roots r = alpha + beta i y_c(x) = c1 e^(alpha x) cos(beta x) + c2 e^(alpha x) sin(beta x) With the given complimentary solution, alpha = 0 and beta = 1 y_p(t) = A t + B sin(t) + C cos(t) As B sin(t) forms part of the complementary solution, this must be multiplied by an additional factor of t so y_p(t) = A t + t(B sin(t) + C cos(t) ) y_p’(t) = A + (B sin(t) + C cos(t)) + t(B cos(t) - C sin(t) ) y_p’’(t) = B cos(t) - C sin(t) + (B cos(t) - C sin(t) + t( -B sin(t) - C cos(t)) y_p’’(t) = 2B cos(t) - 2C sin(t) - t B sin(t) - t C cos(t) The coefficient of the B and C terms in negligible because they are constants so y_p’’(t) = B cos(t) - C sin(t) - t B sin(t) - t C cos(t) Now, plugging y_p(t) , y_p’(t) and y_p’’(t) into the equation we have B cos(t) - C sin(t) - t B sin(t) - t C cos(t) + t(B sin(t) + C cos(t)) + A t = t + sin(t) B cos(t) - C sin(t) + A t = t + sin(t) A = 1 C = - 1 B = 0 y_p(t) = t - C t cos(t) ) y = c1 + c2 cos(t) + t - C t cos(t)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Consider the equation y '' - y = e^(`i * 2 t), where `i = sqrt(-1). Using trial solution y_P = A e^(i * 2 t) find the value of A, which is in general a complex number (though in some cases the real or imaginary part of A might be zero) Show that the real and imaginary parts of the resulting function y_P are, respectively, solutions to the real and imaginary parts of the original equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y_p = A e ^ ( i 2 t) y_p’ = 2 i A e ^ ( i 2 t) y_p’’ = 4 i^2 A e ^ ( i 2 t) = - 4 A e ^ ( i 2 t) -4 e ^ ( i 2 t) - A e ^ ( i 2 t) = e ^ ( i 2 t) -4 A - A = 1 A = - 1 / 5 y_p = - 1 / 5 e ^ ( i 2 t) y_p = - 1 / 5 (cos(2 t) + i sin(2 t)) Expanding the original equation we have: y’’ - y = cos(2 t) + i sin(2 t) with the real part being y’’ - y = cos(2 t) The real part of the particular solution y_p = - 1 / 5 cos(2 t) y_p’ = 2 / 5 sin(2 t) y_p’’ = 4 / 5 cos (2 t) Substituting this into the real part of expanded original equation we have ( - 1 / 5 cos (2 t) )’’ - (- 1 / 5 cos(2 t) = cos(2t) 4 / 5 cos (2 t) + 1 / 5 cos(2 t) = cos(2 t) This is correct. Substituting the imaginary part of the expanded original equation we have y_p = - 1 / 5 sin(2 t) y_p’ = - 2 / 5 cos(2 t) y_p’’ = 4 / 5 sin( 2 t) 4 / 5 sin(2 t) + 1 / 5 sin (2 t) = sin(2 t) This is correct. ??? (I’ve ignored the i terms because they cancel out. Should I include them?
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!