......!!!!!!!!...................................
.............................................
.............................................
0.909090909090…..
confidence rating #$&*: 3
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution:
We have:
an = 10^(-n)
and
an+1 = 10^(-(n+1))
So, since 0 < an+1 < an, this series converges.
*&*& 0 < an+1 < an is not the appropriate test. For example if a(n) = (-1)^n * (.5 + 10^-n) we have the series .5 - .51 + .501 - .5001 etc. and the partial sums jump back and forth by about .5 units and never approach a limit.
What you have is an alternating series where | a(n) | -> 0. This is the criterion for convergence of an alternating series. *&*&
This is an alternating series with | a(n) | = .1^n, for n = 0, 1, 2, ... .
Thus limit{n->infinity}(a(n)) = 0.
An alternating series for which | a(n) | -> 0 is convergent.
sum(1/n^.999) diverges and sum(1 / n^1.001) converges, but doing partial sums on your calculator will never reveal this. The calculator is very limited in determining convergence or divergence.
However there is a pattern to the partial sums, which are 1, .9, .91, .909, .9091, .90909, ... . It's easy enough to show that the pattern continues, so the convergent value is .9090909... .
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Self-critique (if necessary):
------------------------------------------------
Self-critique Rating: ok
*********************************************
Question:
**** Query 9.5.6. (3d edition 9.4.24). What is your expression for the general term of the series p x + p(p-1) / 2! * x^2 + p(p-1)(p-2) * x^3 + …?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
a(n) = p!/(p-n)! x^n / n!
confidence rating #$&*: 3
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution:
** The general term is the coefficient of x^n.
In this case you would have the factors of x^2, x^3 etc. go down to p-1, p-2 etc.; the last factor is p minus one greater than the exponent of x. So the factor of x^n would go down to p - n + 1.
This factor would therefore be p ( p - 1) ( p - 2) ... ( p - n + 1).
This expression can be written as p ! / (p-n) !. All the terms of p ! after (p - n + 1) will divide out, leaving you the desired expression p ( p - 1) ( p - 2) ... ( p - n + 1).
The nth term is therefore (p ! / (p - n) !) / n! * x^n, of the form a(n) x^2 with a(n) = p ! / (n ! * (p - n) ! )
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Self-critique (if necessary):
------------------------------------------------
Self-critique Rating: ok
*********************************************
Question:
**** Query 9.5.18 (was 9.4.18). What is the radius of convergence of the series x / 3 + 2 x^2 / 5 + 3 x^2 / 7 + …?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
a(n) = n x^2 / (2n+1)
lim(n to inf) |a(n+1)|/|a(n)| = lim(n to inf) [(n+1)/(2n+3) / (n/(2n+1))] = lim(n to inf) [(2n^2+3n+1)/(2n^2+3n)] = 1
therefore, R = 1
confidence rating #$&*: 3
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution:
To find the radius of convergence you first find the limit of the ratio | a(n+1) / a(n) | as n -> infinity. The radius of convergence is the reciprocal of this limit.
a(n+1) / a(n) = ( n / (2n+1) ) / (n+1 / (2(n+1) + 1) ) = (2n + 3) / (2n + 1) * n / (n+1).
(2n + 3) / (2n + 1) = ( 1 + 3 / (2n) ) / (1 + 1 / (2n) ), obtained by dividing both numerator and denominator by 2n. In this form we see that as n -> infinity, this expression approaches ( 1 + 0) / ( 1 + 0) = 1.
Similarly n / (n+1) = 1 / (1 + 1/n), which also approaches 1.
Thus (2n + 3) / (2n + 1) * n / (n+1) approaches 1 * 1 = 1, and the limit of a(n+1) / a(n) is therefore 1.
The radius of convergence is the reciprocal of this ratio, which is 1.
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Self-critique (if necessary):
------------------------------------------------
Self-critique Rating: ok
*********************************************
Question:
**** Query 9.5.34 (4th edition 9.5.28 3d edition 9.4.24). What is the radius of convergence of the series p x + p(p-1) / 2! * x^2 + p(p-1)(p-2) * x^3 + … and how did you obtain your result?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
a(n) = p!/(p-n)! x^n / n!
lim(n to inf) |a(n+1)|/|a(n)| = [p!/(p-n-1)!(n+1)! / p!(p-n)!n!] = |p-n) / (n+1)|= |-1| = 1
therefore, R = 1
confidence rating #$&*: 3
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution:
*&*& As seen in 9.4.6 we have
a(n) = p ! / (n ! * (p - n) ! ) so
a(n+1) = p ! / [ (n+1) ! * ( p - (n+1) ) ! ] and
a(n+1) / a(n) = { p ! / [ (n+1) ! * ( p - (n+1) ) ! ] } / {p ! / (n ! * (p - n) ! ) }
= (n ! * ( p - n) !) / {(n+1)! * (p - n - 1) ! }
= (p - n) / (n + 1).
This expression can be written as
(p / n - 1) / (1/n + 1). As n -> infinity both p/n and 1/n approach zero so our limit is -1 / 1 = -1.
Thus the limiting value of | a(n+1) / a(n) | is 1 and the radius of convergence is 1/1 = 1. *&*&
.........................................
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Self-critique (if necessary):
------------------------------------------------
Self-critique Rating: ok
"
Self-critique (if necessary):
------------------------------------------------
Self-critique rating:
"
Self-critique (if necessary):
------------------------------------------------
Self-critique rating:
#*&!
This looks very good. Let me know if you have any questions.