question 18

#$&*

course Mth 174

......!!!!!!!!...................................

Calculus II

Asst # 18

*********************************************

Question:

**** Query problem 11.3.4 (as 10.3.6) Euler y' = x^3-y^3, (0,0), `dx =.2, 5 steps

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

dy = dx(slope)

dy = 0.2(x^3-y^3)

(0, 0)

when x = 0.2, dy = 0.2(0) = 0, (0.2, 0)

when x = 0.4, dy = 0.2(0.2^3) = 0.0016, (0.4, 0.0016)

when x = 0.6, dy = 0.2(0.4^3-0.0016^3) = 0.0128, (0.6, 0.0016+0.0128) = (0.6, 0.0144)

when x = 0.8, dy = 0.2(0.6^3-0.0144^3) = 0.0432, (0.8, 0.0144+0.0432) = (0.8, 0.0576)

when x = 1, dy = 0.2(0.8^3-0.0576^3) = 0.1024, (1, 0.1024+0.0576) = (1, 0.1600)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

**** what is your estimate of y(1)?

** The table below summarizes the calculation. x values starting at 0 and changing by `dx = .2 are as indicated in the x column. y value starts at 0.

The y ' is found by evaluating x^3 - y^3. `dy = y ' * `dx and the new y is the previous value of y plus the change `dy.

Starting from (0,0):

m = 0, delta y = 0.2*0 = 0, new point (0.2,0)

m = 0.2^3 = 0.008, delta y = 0.2*.008 = 0.0016, new point (0.4, 0.0016)

m = 0.4^3 - 0.0016^3 = 0.064, delta y = 0.2*0.064 = 0.0128, new point (0.6, 0.0144)

m = 0.6^3 - 0.0144^3 = 0.216, delta y = 0.2*0.216 = 0.0432, new point (0.8,0.0576)

m = 0.8^3 - 0.0576^3 = 0.512, delta y = 0.2*0.512 = 0.1024, new point (1.0, 0.16)

y(1) = 0.16

......!!!!!!!!...................................

11:35:35

......!!!!!!!!...................................

**** Describe how the given slope field is consistent with your step-by-step results.

......!!!!!!!!...................................

11:35:53

I'm not sure exactly what you are asking here

** If you follow the slope field starting at x = 0 and move to the right until you reach x = 1 your graph will at first remain almost flat, consistent with the fact that the values in the Euler approximation don't reach .1 until x hasexceeded .6, then rise more and more quickly. The contributions of the first three intervals are small, then get progressively larger.

.........................................

11:35:53

......!!!!!!!!...................................

**** Is your approximation an overestimate or an underestimate, and what

property of the slope field allows you to answer this question?

......!!!!!!!!...................................

11:36:07

An underestimate

** The slope field is rising and concave up, so that the slope at the left-hand endpoint will be less than the slope at any other point of a given interval. It follows that an approximation based on slope at the left-hand endpoint of each interval will be an underestimate. **

.........................................

11:36:07

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question:

**** Query problem 11.3.13 4th and 3d editions 11.3.10 (formerly 10.3.10) Euler and left Riemann sums, y' = f(x), y(0) = 0

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

using Euler:

dy = dx (f(x))

y = int( f(x) dx)

and in Euler approximation, f(x) start at the left end of the function and dx is a certain interval which is equal to the (b-a)/n in the left Riemann sums.

Therefore, Euler and Left Riemann Sum gives the same solution

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

**** explain why Euler's Method gives the same result as the left Riemann sum for the integral

......!!!!!!!!...................................

Euler's method multiplies the value of y ' at the left-hand endpoint of each subinterval to calculate the approximate change dy in y, using the approximation dy = y ' * `dx. This result is calculated for each interval and the changes dy are added to approximate the total change in y over the interval.

The left-hand Riemann sum for y ' is obtained by calculating y ' at the left-hand endpoint of each subinterval then multiplying that value by `dx to get the area y ' `dx of the corresponding rectangle. These areas are added to get the total area over the large interval.

So both ways we are totaling the same y ' `dx results, obtaining identical final answers.

.........................................

11:36:36

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question:

**** Query problem 11.4.19 (3d edition 11.4.16 previously 10.4.10) dB/dt + 2B = 50, B(1) = 100

**** what is your solution to the problem?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

dB/dt = 50 - 2B

dB(1/(50-2B)) = dt

int( 1/(25-2B) dB) = int(dt)

-ln|50-2B|/2 =t + C

|50-2B| = e^(-2t-2C)

50-2B = e^(-2t-2C)

B = 25+e^(-2t-2c)/2

B(1) = 100

100 =25 + e^(-2-2c)/2

C = (1-ln150)/2

therefore,

B = 25 + 0.5*e^(-2(t-(1-ln150)/2)

B = 25 + 75e^(-2(t-1))

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** We can separate variables.

We get dB/dt = 50 - 2 B, so that dB / (50 - 2B) = dt.

Integrating both sides we obtain

-.5 ln(50 - 2B) = t + c, where c is an arbitrary integration constant.

This rearranges to

ln | 50 - 2B | = -2 (t + c) so that

| 50 - 2B | = e^(-2(t+c)). Since B(1) = 100 we have, for t = 1, 50 - 2B =

-150 so that |50 - 2 B | = 2 B - 50. Thus

2B - 50 = e^(-2(t+c)) and

B = 25 + .5 * e^(-2(t+c)).

If B(1) = 100 we have

100 = 25 + .5 * e^(-2 ( 1 + c) ) so that

e^(-2 ( 1 + c) ) = 150 and

-2(1+c) = ln(150). Solving for c we find that

c = -1/2 * ln(150) - 1.

Thus

B(t) = 25 + .5 e^(-2(t - 1/2 ln(150) - 1))

= 25 + .5 e^(-2t + ln(150) + 2))

= 25 + .5 e^(-2t) * e^(ln(150) * e^2

= 25 + 75 e^2 e^(-2t)

= 25 + 75 e^(-2 (t - 1) ).

Note that this checks out:

B(1) = 25 + 75 e^2 e^(-2 * 1)

= 25 + 75 e^0 = 25 + 75 = 100.

Note also that starting with the expression

| 50 - 2B | = e^(-2(t+c)) we can write

| 50 - 2B | = e^(-2c) * e^(-2 t). Since e^(-2c) can be any positive number we replace this factor by C, with the provision that C > 0. This gives us

| 50 - 2B | = C e^(-2 t) so that

50 - 2 B = +- C e^(-2 t), giving us solutions

B = 25 + C e^(-2t) and

B = 25 - C e^(-2t).

The first solution gives us B values in excess of 25; the second gives B values less than 25.

Since B(1) = 100, the first form of the solution applies and we have

100 = 25 + C e^(-2), which is easily solved to give

C = 75 e^2.

The solution corresponding to the given initial condition is therefore

B = 25 + 75 e^-2 e^(-2t), which is simplified to give us

B = 25 + 75 e^(-2(t - 1) ). **

.........................................

11:36:54

......!!!!!!!!...................................

**** What is the general solution to the differential equation?

......!!!!!!!!...................................

11:37:08

I'm not sure, I didn't find a general solution

.........................................

11:37:08

......!!!!!!!!...................................

**** Explain how you separated the variables for the problem.

......!!!!!!!!...................................

11:37:28

I just treated db and dt as normal variables and multiplied dt times the

entire equation

.........................................

11:37:28

......!!!!!!!!...................................

**** What did you get when you integrated the separated equation?

......!!!!!!!!...................................

11:37:40

1/2B = 25t - B*t

.........................................

11:37:41

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question:

**** Query problem 11.4.40 was 11.4.39 (was 10.4.30) t dx/dt = (1 + 2 ln t ) tan x,

1st quadrant

**** what is your solution to the problem?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

t dx/dt = (1 + 2 ln t ) tan x

1/tanx dx = (1+2lnt)/t dt

int(1/tan x dx) = int( (1+2ln t)/t dt)

int (1/tan x dx) = int( cos x/sin x dx) = ln|sin x|

int ( 1/t + 2lnt/t dt) = ln|t| + (ln t)^2

ln|sin x| = ln|t| + (ln t)^2 +C

sin x = e^( ln|t| + (ln t)^2+C) = A t(e^(ln t)^2)

x = arcsin(A t(e^(ln t)^2))

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

x = arcsin(A*t^(ln(t) + 1))

** We separate variables.

t dx/dt = (1 + 2 ln t) tan x is rearranged to give

dx / (tan x)

= (1 + 2 ln t) / t * dt

= 1/t dt + 2 ln(t) / t * dt or

cos x / sin x * dx = 1/t dt + 2 ln(t) / t * dt .

Integrating both sides

On the left we let u = sin(x), obtaining du / u with antiderivative ln u =

ln(sin(x))

Thus our antiderivative of the left-hand side is ln(sin(x)).

On the right-hand side 1/t dt + 2 ln(t) / t * dt we first find an antiderivative of ln(t) / t

Letting u = ln(t) we have du = 1/t dt so our integral becomes int(u^2 du) = u^2 / 2 = (ln(t))^2 / 2.

Thus integrating the term 2 ln(t) / t we get (ln(t))^2.

The other term on the right-hand side is easily integrated: int(1/t * dt) = ln(t).

Our equation therefore becomes

ln(sin(x)) = ln(t) + ln(t)^2 + c so that

sin(x) = e^(ln(t) + ln(t)^2 + c)

= e^(ln(t)) * e^(ln(t)^2) * e^c

= A t e^(ln(t))^2.

where A = e^c is an arbitrary positive constant (A = e^c, which can be any positive number)

so that

x = arcsin(A t e^(ln(t)^2)

This makes sense for t > 0, which gives a real value of ln(t), as long as t e^(ln(t)^2 < = 1 (the domain of the arcsin function is the interval [ -1, 1 ] ).

**

.........................................

11:38:09

......!!!!!!!!...................................

**** What is the general solution to the differential equation?

......!!!!!!!!...................................

11:38:18

The same thing

.........................................

11:38:18

......!!!!!!!!...................................

**** Explain how you separated the variables for the problem.

......!!!!!!!!...................................

11:38:38

I multiplied dt by the entire equation and treated it as a normal variable

.........................................

11:38:38

......!!!!!!!!...................................

**** What did you get when you integrated the separated equation?

......!!!!!!!!...................................

11:39:05

ln|sin(x)| =(2 ln(t) + 1)^2/4

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: ok

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks very good. Let me know if you have any questions. &#