Assignment 21

course Mth 158

I had a hard time with this section but after looking through the answers I think I understand it fairly well.

assignment #021021. `query 21

College Algebra

07-26-2008

......!!!!!!!!...................................

07:08:11

2.7.8 (was 2.6.6). y inv with sqrt(x), y = 4 when x = 9.

......!!!!!!!!...................................

RESPONSE -->

confidence assessment: 0

.................................................

......!!!!!!!!...................................

07:11:59

** The inverse proportionality to the square root gives us y = k / sqrt(x).

y = 4 when x = 9 gives us

4 = k / sqrt(9) or

4 = k / 3 so that

k = 4 * 3 = 12.

The equation is therefore

y = 12 / sqrt(x). **

......!!!!!!!!...................................

RESPONSE -->

I understand what I should have done.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

07:22:29

2.7.12 (was 2.6.10). z directly with sum of cube of x and square of y; z=1 and x=2 and y=3.

......!!!!!!!!...................................

RESPONSE -->

confidence assessment: 0

.................................................

......!!!!!!!!...................................

07:30:59

** The proportionality is

z = k (x^3 + y^2).

If x = 2, y = 3 and z = 1 we have

1 = k ( 2^3 + 3^2) or

17 k = 1 so that

k = 1/17.

The proportionality is therefore

z = (x^3 + y^2) / 17. **

......!!!!!!!!...................................

RESPONSE -->

z=k(x^3+y^2)

1=k(2^3+3^2)

1=k(8+9)

1=k17

k=1/17

z=(X^3+Y^2)/17

I wasn't sure how to write it at first but I understand now.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

07:33:19

2.7.20 (was 2.6.20). Period varies directly with sqrt(length), const 2 pi / sqrt(32)

......!!!!!!!!...................................

RESPONSE -->

confidence assessment: 0

.................................................

......!!!!!!!!...................................

07:33:33

** The equation is

T = k sqrt(L), with k = 2 pi / sqrt(32). So we have

T = 2 pi / sqrt(32) * sqrt(L). **

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 0

.................................................

......!!!!!!!!...................................

07:33:47

**** What equation relates period and length? ****

......!!!!!!!!...................................

RESPONSE -->

confidence assessment: 0

.................................................

......!!!!!!!!...................................

07:34:16

2.7.34 (was 2.6.30). Resistance dir with lgth inversely with sq of diam. 432 ft, 4 mm diam has res 1.24 ohms. **** What is the length of a wire with resistance 1.44 ohms and diameter 3 mm? Give the details of your solution.

......!!!!!!!!...................................

RESPONSE -->

confidence assessment: 0

.................................................

......!!!!!!!!...................................

07:34:24

** We have

R = k * L / D^2. Substituting we obtain

1.24 = k * 432 / 4^2 so that

k = 1.24 * 4^2 / 432 = .046 approx.

Thus

R = .046 * L / D^2.

Now if R = 1.44 and d = 3 we find L as follows:

First solve the equation for L to get

L = R * D^2 / (.046). Then substitute to get

L = 1.44 * 3^2 / .046 = 280 approx.

The wire should be about 280 ft long. **

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 0

.................................................

&#Let me know if you have questions. &#