course Mth 158 Œó‹ÿêºÝ‹ËøÂìŸÜéÉN¾YÑßâû¡assignment #030
......!!!!!!!!...................................
07:32:05 4.3.20. Find the domain of G(x)= (x-3) / (x^4+1).
......!!!!!!!!...................................
RESPONSE --> x not=to 3 or 0 confidence assessment: 2
.................................................
......!!!!!!!!...................................
07:34:18 The denominator is x^4 + 1, which could be zero only if x^4 = -1. However x^4 being an even power of x, it cannot be negative. So the denominator cannot be zero and there are no vertical asymptotes.
......!!!!!!!!...................................
RESPONSE --> I was thinking the numerator could not be 0 as well, but it should have been x l x not=0 self critique assessment: 3
.................................................
......!!!!!!!!...................................
07:45:01 4.3.43. Find the vertical and horizontal asymptotes, if any, of H(x)= (x^4+2x^2+1) / (x^2-x+1).
......!!!!!!!!...................................
RESPONSE --> vertical asymptote at x=1 since it is a zero of the denominator and there are no horizontal asymptotes. confidence assessment: 2
.................................................
......!!!!!!!!...................................
07:45:16 The function (x^4+2x^2+1) / (x^2-x+1) factors into (x^2 + 1)^2 / (x-1)^2. The denominator is zero if x = 1. The numerator is not zero when x = 1 so there is a vertical asymptote at x = 1. The degree of the numerator is greater than that of the denominator so the function has no horizontal asymptotes.
......!!!!!!!!...................................
RESPONSE --> ok self critique assessment: 3
.................................................
......!!!!!!!!...................................
09:07:21 4.3.50. Find the vertical and horizontal asymptotes, if any, of R(x)= (6x^2+x+12) / (3x^2-5x-2).
......!!!!!!!!...................................
RESPONSE --> 3x^2-5x-2=(3x+1) (x-2) 3x+1=0 3x=-1 x=-1/3 x-2=0 x=2 There are hertical asymptotes at -1/3 and 2 6x^2/3x^2=2 There is a horizontal asymptote at 2. confidence assessment: 2
.................................................
......!!!!!!!!...................................
09:07:37 The expression R(x)= (6x^2+x+12) / (3x^2-5x-2) factors as (6·x^2 + x + 12)/((x - 2)·(3·x + 1)). The denominator is zero when x = 2 and when x = -1/3. The numerator is not zero at either of these x values so there are vertical asymptotes at x = 2 and x = -1/3. The degree of the numerator is the same as that of the denominator so the leading terms yield horizontal asymptote y = 6 x^2 / (3 x^2) = 2.
......!!!!!!!!...................................
RESPONSE --> Ok self critique assessment: 3
.................................................