Phy231
Your 'cq_1_00.1' report has been received. Scroll down through the document to see any comments I might have inserted, and my final comment at the end.
** **
The problem:
You don't have to actually do so, but it should be clear that if you wished to do so, you could take several observations of positions and clock times. The main point here is to think about how you would use that information if you did go to the trouble of collecting it. However, most students do not answer these questions in terms of position and clock time information. Some students do not pause the video as instructed. To be sure you are thinking in terms of positions and clock times, please take a minute to do the following, which should not take you more than a couple of minutes:
Pick one of the videos, and write down the position and clock time of one of the objects, as best you can determine them, in each of three different frames. The three frames should all depict the same 'roll' down the ramp, i.e. the same video clip, at three different clock times. They should not include information from two or more different video clips.
For each of the three readings, simply write down the clock time as it appears on the computer screen, and the position of the object along the meter stick. You can choose either object (i.e., either the pendulum or the roll of tape), but use the same object for all three measurements. Do not go to a lot of trouble to estimate the position with great accuracy. Just make the best estimates you can in a couple of minutes.
Which object did you choose and what were the three positions and the three clock times?
answer/question/discussion:
Video 4
Tape roll
20.234 2
20.671 12
21.000 20.5
In the following you don't have to actually do calculations with your actual data. Simply explain how you would use data of this nature if you had a series of several position vs. clock time observations:
If you did use observations of positions and clock times from this video, how accurately do you think you could determine the positions, and how accurately do you think you would know the clock times? Give a reasonable numerical answer to this question (e.g., positions within 1 meter, within 2 centimeters, within 3 inches, etc; clock times within 3 seconds, or within .002 seconds, or within .4 seconds, etc.). You should include an explanations of the basis for your estimate: Why did you make the estimate you did?
answer/question/discussion:
I can estimate to approximately 0.1 measurement accuracy since the tape measure is unreadable beyond seeing the inch markings. I can estimate to the nearest 0.2 second since the frame rate of the video is so low that the seconds jump on the timer in approx. 0.15 increments.
How can you use observations of position and clock time to determine whether the tape rolling along an incline is speeding up or slowing down?
answer/question/discussion:
By measuring the change in the change of distance between two sample points it is possible to tell if the object is speeding up or slowing down.
How can you use observations of position and clock time to determine whether the swinging pendulum is speeding up or slowing down?
answer/question/discussion:
By measuring the change in the change of distance between two sample points it is possible to tell if the object is speeding up or slowing down.
Challenge (University Physics students should attempt answer Challenge questions; Principles of Physics and General College Physics may do so but it is optional for these students): It is obvious that a pendulum swinging back and forth speeds up at times, and slows down at times. How could you determine, by measuring positions and clock times, at what location a swinging pendulum starts slowing down?
answer/question/discussion:
When the change in position between two sample points of the same time starts to decrease, the pendulum is slowing down. This should happen once the pendulum has crested the straight up and down line and starts to ascend upwards.
Challenge (University Physics students should attempt answer Challenge questions; Principles of Physics and General College Physics may do so but it is optional for these students): How could you use your observations to determine whether the rate at which the tape is speeding up is constant, increasing or decreasing?
answer/question/discussion:
I can measure the change in distance between two sample points of the same amount of time increases, it means the object is accelerating.
** **
45 minutes
** **
Your work looks very good. Let me know if you have any questions.