015 Conditionals

#$&*

course Mth 151

4/4 8

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the

problem along with a statement of what you do or do not understand about it. This response should be given, based on the

work you did in completing the assignment, before you look at the given solution.

015. Conditionals

*********************************************

Question: `q001. There are 6 questions in this set.

The proposition p -> q is true unless p is true and q is false. Construct the truth table for this proposition.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

p q p->q

T T T

T F F

F T T

F F T

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The proposition will be true in every case except the one where p is true and q is false, which is the TF case. The truth

table therefore reads as follows:

p q p -> q

T T T

T F F

F T T

F F T

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `q002. Reason out, then construct a truth table for the proposition ~p -> q.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

T T F T

T F F T

F T T T

F F T T

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

This proposition will be false in the T -> F case where ~p is true and q is false. Since ~p is true, p must be false so this

must be the FT case. The truth table will contain lines for p, q, ~p and ~p -> q. We therefore get

p q ~p ~p -> q

T T F T since (F -> T) is T

T F F T since (F -> F) is T

F T T T since (T -> T) is T

F F T T since (T -> F) is F

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `q003. Reason out the truth value of the proposition (p ^ ~q) U (~p -> ~q ) in the case FT (i.e., p false, q true).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

False

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To evaluate the expression we must first evaluate p ^ ~q and ~p -> ~q.

p ^ ~q is evaluated by first determining the values of p and ~q. If p is false and q true, then ~q is false. Thus both p and

~q are false, and p ^ ~q is false.

~p -> ~q will be false if ~p is true and ~q is false; otherwise it will be true. In the FT case p is false to ~p is true, and

q is true so ~q is false. Thus it is indeed the case the ~p -> ~q is false.

(p ^ ~q) U (~p -> ~q ) will be false if (p ^ ~q) and (~p -> ~q ) are both false, and will otherwise be true. In the case of

the FT truth values we have seen that both (p ^ ~q) and (~p -> ~q ) are false, so that (p ^ ~q) U (~p -> ~q ) is false.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `q004. Construct a truth table for the proposition (p ^ ~q) U (~p -> ~q ).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

T T F F F T T

T F F T T T T

F T T F F F F

F F T T F T T

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

We will need headings for p, q, ~p, ~q, (p ^ ~q), (~p -> ~q ) and (p ^ ~q) U (~p -> ~q ). So we set up our truth table

p q ~p ~q (p ^ ~q) (~p -> ~q ) (p ^ ~q) U (~p -> ~q )

T T F F F T T

T F F T T T T

F T T F F F F

F F T T F T T

To see the first line, where p and q are both T, we first see that ~p and ~q must both be false. (p ^ ~q) will therefore be

false, since ~q is false; (~p -> ~q) is of the form F -> F and is therefore true. Since (~p -> ~q) is true, (p ^ ~q) U (~p ->

~q ) must be true.

To see the second line, where p is T and q is F, we for see that ~p will be F and ~q true. (p ^ ~q) will therefore be true,

since both p and ~q are true; (~p -> ~q) is of the form F -> T and is therefore true. Since (p ^ ~q) and (~p -> ~q ) are both

true, (p ^ ~q) U (~p -> ~q ) is certainly true.

To see the fourth line, where p is F and q is F, we for see that ~p will be T and ~q true. (p ^ ~q) will be false, since p is

false; (~p -> ~q) is of the form T -> T and is therefore true. Since (~p -> ~q ) is true, (p ^ ~q) U (~p -> ~q ) is true.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `q005. If we have a compound sentence consisting of three statements, e.g., p, q and r, then what possible

combinations of truth values can occur?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

8

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

A compound statement with two statements p and q has four possible combinations of truth values: TT, TF, FT, FF. Here we also

have r, which can be either T or F. So we can append either T or F to each of the possible combinations for p and q.

If r is true then we have possible combinations TT T, TF T, FT T, FF T. If r is false we have TT F, TF F, FT F, FF F. This

gives us 8 possible combinations: TTT, TFT, FTT, FFT, TTF, TFF, FTF, FFF.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `q006. Evaluate the TFT, FFT and FTF lines of the truth table for (p ^ ~q) -> r.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

T F T T T T

F F T T F T

F T F F F T

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

We would need column headings p, q, r, ~q, (p^~q) and (p^~q) -> r. The truth table would then read

p q r ~q (p^~q) (p^~q) -> r

T F T T T T

F F T T F T

F T F F F T

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

&#Very good work. Let me know if you have questions. &#